Have a personal or library account? Click to login
Boosting of Dissipated Renewable Energy Systems Towards Sustainability in Kazakhstan Cover

Boosting of Dissipated Renewable Energy Systems Towards Sustainability in Kazakhstan

Open Access
|Oct 2024

References

  1. Haghjoo R., Choobchian S., Abbasi E. Unveiling energy security in agriculture through vital indicators extraction and insights. Sci Rep 2024:14(1):8626. https://doi.org/10.1038/s41598-024-59273-3">https://doi.org/10.1038/s41598-024-59273-3
  2. Peng X., Guan X., Zeng Y., Zhang J. Artificial Intelligence-Driven Multi-Energy Optimization: Promoting Green Transition of Rural Energy Planning and Sustainable Energy Economy. Sustainability 2024:16(10):4111. https://doi.org/10.3390/su16104111">https://doi.org/10.3390/su16104111
  3. Wei S., Yang Y., Xu Y. Regional development, agricultural industrial upgrading and carbon emissions: What is the role of fiscal expenditure? Evidence from Northeast China. Economic Analysis and Policy 2023:80:1858–1871. https://doi.org/10.1016/j.eap.2023.11.016">https://doi.org/10.1016/j.eap.2023.11.016
  4. Paris B. et al. Energy use in open-field agriculture in the EU: A critical review recommending energy efficiency measures and renewable energy sources adoption. Renewable and Sustainable Energy Reviews 2022:158:112098. https://doi.org/10.1016/j.rser.2022.112098">https://doi.org/10.1016/j.rser.2022.112098
  5. Maradin D. Advantages and disadvantages of renewable energy sources utilization. IJEEP 2021:11(3):176–183. https://doi.org/10.32479/ijeep.11027">https://doi.org/10.32479/ijeep.11027
  6. Hvelplund F. Policies for 100% Renewable Energy Systems. In Im Hürdenlauf zur Energiewende Brunnengräber A., Di Nucci M. R., Eds., Wiesbaden: Springer Fachmedien Wiesbaden, 2014:215–223. https://doi.org/10.1007/978-3-658-06788-5_14">https://doi.org/10.1007/978-3-658-06788-5_14
  7. Resch G. et al. Assessment of Policy Pathways for Reaching the EU Target of (At Least) 27% Renewable Energies by 2030, in The European Dimension of Germany’s Energy Transition, Gawel E., Strunz S., Lehmann P., Purkus A., Eds., Cham: Springer International Publishing, 2019:45–65. https://doi.org/10.1007/978-3-030-03374-3_4">https://doi.org/10.1007/978-3-030-03374-3_4
  8. European Commission. REPowerEU: Affordable, Secure and Sustainable Energy for Europe. [Online]. [Accessed 18.12.2023]. Available: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-greendeal/repowereu-affordable-secure-and-sustainable-energy-europe_en
  9. Zhou S., Solomon B. D. Do renewable portfolio standards in the United States stunt renewable electricity development beyond mandatory targets? Energy Policy 2020:140:111377. https://doi.org/10.1016/j.enpol.2020.111377">https://doi.org/10.1016/j.enpol.2020.111377
  10. Heredia-Fonseca R., Kumar S., Ghosh S., Thakur J., Bhattacharya A. Modeling a 100% renewable energy pathway in developing Countries: A case study of State of Goa, India. Energy Conversion and Management 2024:315:118800. https://doi.org/10.1016/j.enconman.2024.118800">https://doi.org/10.1016/j.enconman.2024.118800
  11. Zhao C., Wang F. Economy-equity equilibrium based bi-level provincial renewable portfolio standard target allocation: Perspective from China. Energy 2024:290:130248. https://doi.org/10.1016/j.energy.2024.130248.">https://doi.org/10.1016/j.energy.2024.130248.
  12. Poullikkas A., Kourtis G., Hadjipaschalis I. A review of net metering mechanism for electricity renewable energy sources. International Journal of Energy and Environment 2013:4(6):975–1002.
  13. Hasanov F. J., Mikayilov J. I., Mukhtarov S., Suleymanov E. Correction to: Does CO2 emissions–economic growth relationship reveal EKC in developing countries? Evidence from Kazakhstan. Environ Sci Pollut Res 2019:26(34):35282–35282. https://doi.org/10.1007/s11356-019-06464-5">https://doi.org/10.1007/s11356-019-06464-5
  14. Li L. et al. Enabling Renewable Energy Technologies in Harsh Climates with Ultra‐Efficient Electro‐Thermal Desnowing, Defrosting, and Deicing. Adv Funct Materials 2022:32(31):2201521. https://doi.org/10.1002/adfm.202201521">https://doi.org/10.1002/adfm.202201521
  15. Zholdayakova S., Abuov Y., Zhakupov D., Suleimenova B., Kim A. Toward a Hydrogen Economy in Kazakhstan. Asian Development Bank Institute, Oct. 2022. https://doi.org/10.56506/IWLU3832">https://doi.org/10.56506/IWLU3832
  16. Alhassan H. The effect of agricultural total factor productivity on environmental degradation in sub-Saharan Africa. Scientific African 2021:12:e00740. https://doi.org/10.1016/j.sciaf.2021.e00740">https://doi.org/10.1016/j.sciaf.2021.e00740
  17. The Government of the Republic of and Kazakhstan. Strategy for achieving carbon neutrality in the Republic of Kazakhstan by 2060 (in Kazakh). 2023:121. [Online]. [Accessed: 10.02.2024]. Available: https://adilet.zan.kz/rus/docs/U2300000121
  18. Republic of Kazakhstan. Law on support for the use of renewable energy sources (in Kazahk). Jul. 04, 2009. [Online]. [Accessed: 10.02.2024]. Available: https://adilet.zan.kz/rus/docs/Z090000165_
  19. Victoria M., Zhu K., Brown T., Andresen G. B., Greiner M. Early decarbonisation of the European energy system pays off. Nat Commun 2020:11(1):6223. https://doi.org/10.1038/s41467-020-20015-4">https://doi.org/10.1038/s41467-020-20015-4
  20. Laktuka K., Pakere I., Kalnbalkite A., Zlaugotne B., Blumberga D. Renewable energy project implementation: Will the Baltic States catch up with the Nordic countries? Utilities Policy 2023:82:101577. https://doi.org/10.1016/j.jup.2023.101577">https://doi.org/10.1016/j.jup.2023.101577
  21. Kwon P. S., Østergaard P. A. Priority order in using biomass resources – Energy systems analyses of future scenarios for Denmark. Energy 2013:63:86–94. https://doi.org/10.1016/j.energy.2013.10.005">https://doi.org/10.1016/j.energy.2013.10.005
  22. Gumber A., Zana R., Steffen B. A global analysis of renewable energy project commissioning timelines. Applied Energy 2024:358:122563. https://doi.org/10.1016/j.apenergy.2023.122563">https://doi.org/10.1016/j.apenergy.2023.122563
  23. Østergaard P. A., Andersen A. N. Variable taxes promoting district heating heat pump flexibility. Energy 2021:221:119839. https://doi.org/10.1016/j.energy.2021.119839">https://doi.org/10.1016/j.energy.2021.119839
  24. Wang H. et al. Heat-power peak shaving and wind power accommodation of combined heat and power plant with thermal energy storage and electric heat pump. Energy Conversion and Management 2023:297:117732. https://doi.org/10.1016/j.enconman.2023.117732">https://doi.org/10.1016/j.enconman.2023.117732
  25. Østergaard P. A., Andersen A. N. Optimal heat storage in district energy plants with heat pumps and electrolysers. Energy 2023:275:127423. https://doi.org/10.1016/j.energy.2023.127423">https://doi.org/10.1016/j.energy.2023.127423
  26. The Danish Energy Agency. Technology Data – Generation of Electricity and District heating. 2020.
  27. European Commission. Directorate General for Energy. Directorate General for Climate Action., and European Commission. Directorate General for Mobility and Transport., EU reference scenario 2020: energy, transport and GHG emissions: trends to 2050. LU: Publications Office, 2021. [Online]. [Accessed 18.12.2023]. Available: https://data.europa.eu/doi/10.2833/35750
DOI: https://doi.org/10.2478/rtuect-2024-0042 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 540 - 555
Submitted on: Aug 19, 2024
Accepted on: Oct 4, 2024
Published on: Oct 26, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2024 Guldana Khabdullina, Dace Paule, Ieva Pakere, Asset Khabdullin, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.