Have a personal or library account? Click to login
An Empirical Approach to Solar Photovoltaic Cell Temperature Prediction Cover

An Empirical Approach to Solar Photovoltaic Cell Temperature Prediction

Open Access
|Oct 2024

References

  1. Ding Q., Huang J., Chen J., Luo X. Climate warming, renewable energy consumption and rare earth market: Evidence from the United States. Energy 2024:290:130276. https://doi.org/10.1016/j.energy.2024.130276
  2. Blumberga D., Chen B., Ozarska A., Indzere Z. Lauka D. Energy, Bioeconomy, Climate Changes and Environment Nexus. Environmental and Climate Technologies 2019:23(3):370–392. https://doi.org/10.2478/rtuect-2019-0102
  3. Kostevica V., Dzikevics M. Bibliometric Analysis of the Climate Change Impact on Energy Systems. Environmental and Climate Technologies 2023:27(1):950–963. https://doi.org/10.2478/rtuect-2023-0069
  4. Khamisani A. A., Liu D. P. P., Cloward D. J., Bai D. R. Design Methodology of Off-Grid PV Solar Powered System (A Case Study of Solar Powered Bus Shelter).
  5. Liu Q., Yu G., Liu J. J. Solar Radiation as Large-Scale Resource for Energy-Short World. Energy Environ. 2009:20(3):319–329. https://doi.org/10.1260/095830509788066466
  6. Iheanetu K. J. Solar Photovoltaic Power Forecasting: A Review. Sustainability 2022:14(24):17005. https://doi.org/10.3390/su142417005
  7. Bodnár I., Matusz-Kalász D., Koós D. Experimental and numerical analysis of solar cell temperature transients. Pollack Periodica 2021:16(2):104–109. https://doi.org/10.1556/606.2020.00260
  8. Shaik F., Lingala S. S., Veeraboina P. Effect of various parameters on the performance of solar PV power plant: a review and the experimental study. Sustainable Energy Research 2023:10(1):6. https://doi.org/10.1186/s40807-023-00076-x
  9. Jathar L. D., et al. Comprehensive review of environmental factors influencing the performance of photovoltaic panels: Concern over emissions at various phases throughout the lifecycle. Environ. Pollution 2023:326:121474. https://doi.org/10.1016/j.envpol.2023.121474
  10. Ceylan İ., Erkaymaz O., Gedik E., Gürel A. E. The prediction of photovoltaic module temperature with artificial neural networks. Case Stud. Therm. Eng. 2014:3:11–20. https://doi.org/10.1016/j.csite.2014.02.001
  11. Schiro F., Benato A., Stoppato A., Destro N. Improving photovoltaics efficiency by water cooling: Modelling and experimental approach. Energy 2017:137:798–810. https://doi.org/10.1016/j.energy.2017.04.164
  12. Ansari E., Akhtar M. N., Othman W. A. F. W., Abu Bakar E., Alhady S. S. N. Numerical Investigation of Thermal Efficiency of a Solar Cell. Applied Sciences 2022:12(21):10887. https://doi.org/10.3390/app122110887
  13. Parthiban R., Ponnambalam P. An Enhancement of the Solar Panel Efficiency: A Comprehensive Review. Front. Energy Res. 2022:10. https://doi.org/10.3389/fenrg.2022.937155
  14. Cheraghizade M., Jamali-Sheini F. Photovoltaic behavior of SnS solar cells under temperature variations. Optik 2022:254:168635. https://doi.org/10.1016/j.ijleo.2022.168635
  15. Wei Z. et al. Understanding the temperature sensitivity of the photovoltaic parameters of perovskite solar cells. Solar Energy 2023:264:112040. https://doi.org/10.1016/j.solener.2023.112040
  16. Piotrowski L. J., Simões M. G., Farret F. A. Feasibility of water-cooled photovoltaic panels under the efficiency and durability aspects. Solar Energy 2020:207:103–109. https://doi.org/10.1016/j.solener.2020.06.087
  17. Kersten F. et al. Degradation of multicrystalline silicon solar cells and modules after illumination at elevated temperature. Solar Energy Materials and Solar Cells 2015:142:83–86. https://doi.org/10.1016/j.solmat.2015.06.015
  18. Taghinia A., Yazdi F., Fazel P., Anousheh S. N., Davoudi K. G. Comparison of single junction GaAs and In0.2Ga0.8N based solar cells at various temperatures. Energy Procedia 2012:14:919–924. https://doi.org/10.1016/j.egypro.2011.12.1033
  19. Liao W., Heo Y., Xu S. Evaluation of Temperature Dependent Models for PV Yield Prediction. [Online]. [Accessed 18.09.2021]. Available: https://www.semanticscholar.org/paper/Evaluation-of-Temperature-Dependent-Models-for-PV-Liao-Heo/a232d5d270cfdbef9feef9e603e64ba3c314d59d
  20. Kamuyu W. C. L., J. Won L. C., Ahn H. Prediction Model of Photovoltaic Module Temperature for Power Performance of Floating PVs. Energies 2018:11(2):447. https://doi.org/10.3390/en11020447
  21. Du Y., Tao W., Liu Y., Jiang J., Huang H. Heat transfer modeling and temperature experiments of crystalline silicon photovoltaic modules. Solar Energy 2017:146:257–263. https://doi.org/10.1016/j.solener.2017.02.049
  22. Vijaykumar R., Rudramoorthy R., Mangalore A. R. Prediction of Solar PV Panel Temperature Using Mathematical Models and Artificial Neural Networks. J. Comput. Theor. Nanosci. 2017:14(10):4986–4997. https://doi.org/10.1166/jctn.2017.6909
  23. Coskun C., Koçyiğit N., Oktay Z. Estimation of pv module surface temperature using artificial neural networks. Mugla J. Sci. Technol. 2016:2(2). https://doi.org/10.22531/muglajsci.283611
  24. Motuzienė V., Bielskus J., Lapinskienė V., Rynkun G. Office Building’s Occupancy Prediction Using Extreme Learning Machine Model with Different Optimization Algorithms. Environ. Clim. Technol. 2021:25(1):525–536. https://doi.org/10.2478/rtuect-2021-0038
  25. Serrano-Luján L., Toledo C., Colmenar J. M., Abad J., Urbina A. Accurate thermal prediction model for buildingintegrated photovoltaics systems using guided artificial intelligence algorithms. Applied Energy 2022:315:119015. https://doi.org/10.1016/j.apenergy.2022.119015
  26. Jošt M. et al. Perovskite Solar Cells go Outdoors: Field Testing and Temperature Effects on Energy Yield. Adv. Energy Mater. 2020:10(25):2000454. https://doi.org/10.1002/aenm.202000454
  27. Meng Q. et al. Effect of temperature on the performance of perovskite solar cells. J. Mater. Sci. Mater. Electron. 2020:32:12784–12792. https://doi.org/10.1007/s10854-020-03029-y
  28. Khaledi P., Behboodnia M., Karimi M. Simulation and Optimization of Temperature Effect in Solar Cells CdTe with Back Connection Cu2O. Int. J. Opt. 2022:e1207082. https://doi.org/10.1155/2022/1207082
  29. Zhang C., Zhang Y., Su J., Gu T., Yang M. Performance prediction of PV modules based on artificial neural network and explicit analytical model. J. Renew. Sustain. Energy 2020:12(1):013501. https://doi.org/10.1063/1.5131432
  30. Paulescu M. et al. Online Forecasting of the Solar Energy Production. Ann. West Univ. Timisoara – Phys. 2018:60(1):104–110. https://doi.org/10.2478/awutp-2018-0011
  31. Mishra R., Tiwari G. Energy and exergy analysis of hybrid photovoltaic thermal water collector for constant collection temperature mode. Solar Energy 2013:90:58–67. https://doi.org/10.1016/j.solener.2012.12.022
  32. Dubey S., Solanki S. C., Tiwari A. Energy and exergy analysis of PV/T air collectors connected in series. Energy Build. 2009:41. https://doi.org/10.1016/j.enbuild.2009.03.010
  33. Fawagreh K., Gaber M. M., Elyan E. Random forests: from early developments to recent advancements. Syst. Sci. Control Eng. 2014:2(1):602–609. https://doi.org/10.1080/21642583.2014.956265
  34. Breiman L. Random Forests. Mach. Learn. 2001:45(1):5–32. https://doi.org/10.1023/A:1010933404324
  35. Schonlau M., Zou R. Y. The random forest algorithm for statistical learning. Stata J. Promot. Commun. Stat. Stata 2020:20(1):3–29. https://doi.org/10.1177/1536867X20909688
  36. Amiry H. et al. Assessment of improved models for predicting PV module temperature and their electrical performance in a semi-arid coastal region. Int. J. Green Energy 2023:20(14):1584–1596. https://doi.org/10.1080/15435075.2023.2166788
  37. Gholami A. et al. Impact of harsh weather conditions on solar photovoltaic cell temperature: Experimental analysis and thermal-optical modeling. Solar Energy 2023:252:176–194. https://doi.org/10.1016/j.solener.2023.01.039
  38. Du Y. et al. Evaluation of photovoltaic panel temperature in realistic scenarios. Energy Convers. Manag. 2016:108:60–67. https://doi.org/10.1016/j.enconman.2015.10.065
DOI: https://doi.org/10.2478/rtuect-2024-0033 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 422 - 436
Submitted on: Mar 15, 2024
Accepted on: Sep 12, 2024
Published on: Oct 6, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Kudzanayi Chiteka, Christopher Enweremadu, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.