Have a personal or library account? Click to login
An Empirical Approach to Solar Photovoltaic Cell Temperature Prediction Cover

An Empirical Approach to Solar Photovoltaic Cell Temperature Prediction

Open Access
|Oct 2024

References

  1. Ding Q., Huang J., Chen J., Luo X. Climate warming, renewable energy consumption and rare earth market: Evidence from the United States. <em>Energy</em> 2024:290:130276. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2024.130276" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2024.130276</a>">https://doi.org/10.1016/j.energy.2024.130276</ext-link>
  2. Blumberga D., Chen B., Ozarska A., Indzere Z. Lauka D. Energy, Bioeconomy, Climate Changes and Environment Nexus. <em>Environmental and Climate Technologies</em> 2019:23(3):370–392. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2019-0102" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2019-0102</a>">https://doi.org/10.2478/rtuect-2019-0102</ext-link>
  3. Kostevica V., Dzikevics M. Bibliometric Analysis of the Climate Change Impact on Energy Systems. <em>Environmental and Climate Technologies</em> 2023:27(1):950–963. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2023-0069" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2023-0069</a>">https://doi.org/10.2478/rtuect-2023-0069</ext-link>
  4. Khamisani A. A., Liu D. P. P., Cloward D. J., Bai D. R. Design Methodology of Off-Grid PV Solar Powered System (A Case Study of Solar Powered Bus Shelter).
  5. Liu Q., Yu G., Liu J. J. Solar Radiation as Large-Scale Resource for Energy-Short World. <em>Energy Environ.</em> 2009:20(3):319–329. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1260/095830509788066466" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1260/095830509788066466</a>">https://doi.org/10.1260/095830509788066466</ext-link>
  6. Iheanetu K. J. Solar Photovoltaic Power Forecasting: A Review. <em>Sustainability</em> 2022:14(24):17005. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/su142417005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/su142417005</a>">https://doi.org/10.3390/su142417005</ext-link>
  7. Bodnár I., Matusz-Kalász D., Koós D. Experimental and numerical analysis of solar cell temperature transients. <em>Pollack Periodica</em> 2021:16(2):104–109. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1556/606.2020.00260" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1556/606.2020.00260</a>">https://doi.org/10.1556/606.2020.00260</ext-link>
  8. Shaik F., Lingala S. S., Veeraboina P. Effect of various parameters on the performance of solar PV power plant: a review and the experimental study. <em>Sustainable Energy Research</em> 2023:10(1):6. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1186/s40807-023-00076-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/s40807-023-00076-x</a>">https://doi.org/10.1186/s40807-023-00076-x</ext-link>
  9. Jathar L. D., <em>et al.</em> Comprehensive review of environmental factors influencing the performance of photovoltaic panels: Concern over emissions at various phases throughout the lifecycle. <em>Environ. Pollution</em> 2023:326:121474. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.envpol.2023.121474" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.envpol.2023.121474</a>">https://doi.org/10.1016/j.envpol.2023.121474</ext-link>
  10. Ceylan İ., Erkaymaz O., Gedik E., Gürel A. E. The prediction of photovoltaic module temperature with artificial neural networks. <em>Case Stud. Therm. Eng.</em> 2014:3:11–20. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.csite.2014.02.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.csite.2014.02.001</a>">https://doi.org/10.1016/j.csite.2014.02.001</ext-link>
  11. Schiro F., Benato A., Stoppato A., Destro N. Improving photovoltaics efficiency by water cooling: Modelling and experimental approach. <em>Energy</em> 2017:137:798–810. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2017.04.164" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2017.04.164</a>">https://doi.org/10.1016/j.energy.2017.04.164</ext-link>
  12. Ansari E., Akhtar M. N., Othman W. A. F. W., Abu Bakar E., Alhady S. S. N. Numerical Investigation of Thermal Efficiency of a Solar Cell. <em>Applied Sciences</em> 2022:12(21):10887. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/app122110887" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/app122110887</a>">https://doi.org/10.3390/app122110887</ext-link>
  13. Parthiban R., Ponnambalam P. An Enhancement of the Solar Panel Efficiency: A Comprehensive Review. <em>Front. Energy Res.</em> 2022:10. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3389/fenrg.2022.937155" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fenrg.2022.937155</a>">https://doi.org/10.3389/fenrg.2022.937155</ext-link>
  14. Cheraghizade M., Jamali-Sheini F. Photovoltaic behavior of SnS solar cells under temperature variations. <em>Optik</em> 2022:254:168635. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ijleo.2022.168635" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijleo.2022.168635</a>">https://doi.org/10.1016/j.ijleo.2022.168635</ext-link>
  15. Wei Z. <em>et al.</em> Understanding the temperature sensitivity of the photovoltaic parameters of perovskite solar cells. <em>Solar Energy</em> 2023:264:112040. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.solener.2023.112040" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.solener.2023.112040</a>">https://doi.org/10.1016/j.solener.2023.112040</ext-link>
  16. Piotrowski L. J., Simões M. G., Farret F. A. Feasibility of water-cooled photovoltaic panels under the efficiency and durability aspects. <em>Solar Energy</em> 2020:207:103–109. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.solener.2020.06.087" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.solener.2020.06.087</a>">https://doi.org/10.1016/j.solener.2020.06.087</ext-link>
  17. Kersten F. <em>et al.</em> Degradation of multicrystalline silicon solar cells and modules after illumination at elevated temperature. <em>Solar Energy Materials and Solar Cells</em> 2015:142:83–86. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.solmat.2015.06.015" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.solmat.2015.06.015</a>">https://doi.org/10.1016/j.solmat.2015.06.015</ext-link>
  18. Taghinia A., Yazdi F., Fazel P., Anousheh S. N., Davoudi K. G. Comparison of single junction GaAs and In0.2Ga0.8N based solar cells at various temperatures. <em>Energy Procedia</em> 2012:14:919–924. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.egypro.2011.12.1033" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.egypro.2011.12.1033</a>">https://doi.org/10.1016/j.egypro.2011.12.1033</ext-link>
  19. Liao W., Heo Y., Xu S. Evaluation of Temperature Dependent Models for PV Yield Prediction. [Online]. [Accessed 18.09.2021]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.semanticscholar.org/paper/Evaluation-of-Temperature-Dependent-Models-for-PV-Liao-Heo/a232d5d270cfdbef9feef9e603e64ba3c314d59d">https://www.semanticscholar.org/paper/Evaluation-of-Temperature-Dependent-Models-for-PV-Liao-Heo/a232d5d270cfdbef9feef9e603e64ba3c314d59d</ext-link>
  20. Kamuyu W. C. L., J. Won L. C., Ahn H. Prediction Model of Photovoltaic Module Temperature for Power Performance of Floating PVs. <em>Energies</em> 2018:11(2):447. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en11020447" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en11020447</a>">https://doi.org/10.3390/en11020447</ext-link>
  21. Du Y., Tao W., Liu Y., Jiang J., Huang H. Heat transfer modeling and temperature experiments of crystalline silicon photovoltaic modules. <em>Solar Energy</em> 2017:146:257–263. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.solener.2017.02.049" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.solener.2017.02.049</a>">https://doi.org/10.1016/j.solener.2017.02.049</ext-link>
  22. Vijaykumar R., Rudramoorthy R., Mangalore A. R. Prediction of Solar PV Panel Temperature Using Mathematical Models and Artificial Neural Networks. <em>J. Comput. Theor. Nanosci.</em> 2017:14(10):4986–4997. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1166/jctn.2017.6909" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1166/jctn.2017.6909</a>">https://doi.org/10.1166/jctn.2017.6909</ext-link>
  23. Coskun C., Koçyiğit N., Oktay Z. Estimation of pv module surface temperature using artificial neural networks. <em>Mugla J. Sci. Technol.</em> 2016:2(2). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.22531/muglajsci.283611" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.22531/muglajsci.283611</a>">https://doi.org/10.22531/muglajsci.283611</ext-link>
  24. Motuzienė V., Bielskus J., Lapinskienė V., Rynkun G. Office Building’s Occupancy Prediction Using Extreme Learning Machine Model with Different Optimization Algorithms. <em>Environ. Clim. Technol.</em> 2021:25(1):525–536. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2021-0038" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2021-0038</a>">https://doi.org/10.2478/rtuect-2021-0038</ext-link>
  25. Serrano-Luján L., Toledo C., Colmenar J. M., Abad J., Urbina A. Accurate thermal prediction model for buildingintegrated photovoltaics systems using guided artificial intelligence algorithms. <em>Applied Energy</em> 2022:315:119015. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.apenergy.2022.119015" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.apenergy.2022.119015</a>">https://doi.org/10.1016/j.apenergy.2022.119015</ext-link>
  26. Jošt M. <em>et al.</em> Perovskite Solar Cells go Outdoors: Field Testing and Temperature Effects on Energy Yield. <em>Adv. Energy Mater.</em> 2020:10(25):2000454. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/aenm.202000454" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/aenm.202000454</a>">https://doi.org/10.1002/aenm.202000454</ext-link>
  27. Meng Q. <em>et al.</em> Effect of temperature on the performance of perovskite solar cells. <em>J. Mater. Sci. Mater. Electron.</em> 2020:32:12784–12792. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s10854-020-03029-y" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10854-020-03029-y</a>">https://doi.org/10.1007/s10854-020-03029-y</ext-link>
  28. Khaledi P., Behboodnia M., Karimi M. Simulation and Optimization of Temperature Effect in Solar Cells CdTe with Back Connection Cu2O. <em>Int. J. Opt.</em> 2022:e1207082. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1155/2022/1207082" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1155/2022/1207082</a>">https://doi.org/10.1155/2022/1207082</ext-link>
  29. Zhang C., Zhang Y., Su J., Gu T., Yang M. Performance prediction of PV modules based on artificial neural network and explicit analytical model. <em>J. Renew. Sustain. Energy</em> 2020:12(1):013501. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1063/1.5131432" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1063/1.5131432</a>">https://doi.org/10.1063/1.5131432</ext-link>
  30. Paulescu M. <em>et al.</em> Online Forecasting of the Solar Energy Production. <em>Ann. West Univ. Timisoara – Phys.</em> 2018:60(1):104–110. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/awutp-2018-0011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/awutp-2018-0011</a>">https://doi.org/10.2478/awutp-2018-0011</ext-link>
  31. Mishra R., Tiwari G. Energy and exergy analysis of hybrid photovoltaic thermal water collector for constant collection temperature mode. <em>Solar Energy</em> 2013:90:58–67. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.solener.2012.12.022" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.solener.2012.12.022</a>">https://doi.org/10.1016/j.solener.2012.12.022</ext-link>
  32. Dubey S., Solanki S. C., Tiwari A. Energy and exergy analysis of PV/T air collectors connected in series. <em>Energy Build.</em> 2009:41. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.enbuild.2009.03.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enbuild.2009.03.010</a>">https://doi.org/10.1016/j.enbuild.2009.03.010</ext-link>
  33. Fawagreh K., Gaber M. M., Elyan E. Random forests: from early developments to recent advancements. <em>Syst. Sci. Control Eng.</em> 2014:2(1):602–609. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/21642583.2014.956265" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/21642583.2014.956265</a>">https://doi.org/10.1080/21642583.2014.956265</ext-link>
  34. Breiman L. Random Forests. <em>Mach. Learn.</em> 2001:45(1):5–32. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1023/A:1010933404324" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1023/A:1010933404324</a>">https://doi.org/10.1023/A:1010933404324</ext-link>
  35. Schonlau M., Zou R. Y. The random forest algorithm for statistical learning. <em>Stata J. Promot. Commun. Stat. Stata</em> 2020:20(1):3–29. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1177/1536867X20909688" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1177/1536867X20909688</a>">https://doi.org/10.1177/1536867X20909688</ext-link>
  36. Amiry H. <em>et al.</em> Assessment of improved models for predicting PV module temperature and their electrical performance in a semi-arid coastal region. <em>Int. J. Green Energy</em> 2023:20(14):1584–1596. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/15435075.2023.2166788" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/15435075.2023.2166788</a>">https://doi.org/10.1080/15435075.2023.2166788</ext-link>
  37. Gholami A. <em>et al.</em> Impact of harsh weather conditions on solar photovoltaic cell temperature: Experimental analysis and thermal-optical modeling. <em>Solar Energy</em> 2023:252:176–194. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.solener.2023.01.039" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.solener.2023.01.039</a>">https://doi.org/10.1016/j.solener.2023.01.039</ext-link>
  38. Du Y. <em>et al.</em> Evaluation of photovoltaic panel temperature in realistic scenarios. <em>Energy Convers. Manag.</em> 2016:108:60–67. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.enconman.2015.10.065" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enconman.2015.10.065</a>">https://doi.org/10.1016/j.enconman.2015.10.065</ext-link>
DOI: https://doi.org/10.2478/rtuect-2024-0033 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 422 - 436
Submitted on: Mar 15, 2024
Accepted on: Sep 12, 2024
Published on: Oct 6, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2024 Kudzanayi Chiteka, Christopher Enweremadu, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.