References
- Yao S., Wu J., Qadrdan M. A state-of-the-art analysis and perspectives on the 4th/5th generation district heating and cooling systems. Renewable and Sustainable Energy Reviews 2024:202:114729. https://doi.org/10.1016/j.rser.2024.114729
- Munćan V., Mujan I., Macura D., Anđelković A. S. The state of district heating and cooling in Europe – A literature-based assessment. Energy 2024:304:132191. https://doi.org/10.1016/j.energy.2024.132191
- Sorknæs P., et al. The benefits of 4th generation district heating in a 100% renewable energy system. Energy 2020:213:119030. https://doi.org/10.1016/j.energy.2020.119030
- Li H., Nord N. Transition to the 4th generation district heating – Possibilities, bottlenecks, and challenges. Energy Procedia 2018:149:483–498. https://doi.org/10.1016/j.egypro.2018.08.213
- Behmane E., Pakere I. Mapping of Energy Consumption for Cooling – Assessment of the Cooling Demand Potential for the City of Riga. Environmental and Climate Technologies 2024:28(1):230–242. https://doi.org/10.2478/rtuect-2024-0019
- Neri M., Guelpa E., Verda V. Trade-off between optimal design and operation in district cooling networks. Smart Energy 2024:13:100127. https://doi.org/10.1016/j.segy.2023.100127
- Kadam S. T., et al. Thermo-economic and environmental assessment of hybrid vapor compression-absorption refrigeration systems for district cooling. Energy 2022:243:122991. https://doi.org/10.1016/j.energy.2021.122991
- Lund H., et al. Perspectives on fourth and fifth generation district heating. Energy 2021:227:120520. https://doi.org/10.1016/j.energy.2021.120520
- Cowley T., Hutty T., Hammond J., Brown S. Achieving emission reduction through the utilisation of local low-grade heat sources in district heating networks. Applied Thermal Engineering 2024:242:122381. https://doi.org/10.1016/j.applthermaleng.2024.122381
- Yuan X., Liang Y., Hu X., Xu Y., Chen Y., Kosonen R. Waste heat recoveries in data centers: A review. Renewable and Sustainable Energy Reviews 2023:188:113777. https://doi.org/10.1016/j.rser.2023.113777
- Miškić J., Dorotić H., Pukšec T., Soldo V., Duić N. Optimization of data centre waste heat integration into the low-temperature district heating networks. Optimization and Engineering 2024:25(1):63–91. https://doi.org/10.1007/s11081-023-09837-5
- Dorotić H., Čuljak K., Miškić J., Pukšec T., Duić N. Technical and Economic Assessment of Supermarket and Power Substation Waste Heat Integration into Existing District Heating Systems. Energies (Basel) 2022:15(5):1666. https://doi.org/10.3390/en15051666
- Jürgens B., et al. Covering District Heating Demand with Waste Heat from Data Centres – A Feasibility Study in Frankfurt, Germany. International Journal of Sustainable Energy Planning and Management 2024:41:58–70. https://doi.org/10.54337/ijsepm.8149
- Wu W., Wang B., Shi W., Li X. Absorption heating technologies: A review and perspective. Applied Energy 2014:130:51–71. https://doi.org/10.1016/j.apenergy.2014.05.027
- Sun F., Zhao X., Hao B. Novel solar-driven low temperature district heating and cooling system based on distributed half-effect absorption heat pumps with lithium bromide. Energy 2023:270:126884. https://doi.org/10.1016/j.energy.2023.126884
- Lagoeiro Beng H., Maidment G., Curry D., Faulks G., Bielicki J. Heat from Underground Energy London (Heat FUEL). 2019.
- He Z., Ding T., Liu Y., Li Z. Analysis of a district heating system using waste heat in a distributed cooling data center. Applied Thermal Engineering 2018:141:1131–1140. https://doi.org/10.1016/j.applthermaleng.2018.06.036
- Al-Sayyab A. K. S., Navarro-Esbrí J., Barragán-Cervera A., Mota-Babiloni A. Techno-economic analysis of a PV/T waste heat–driven compound ejector-heat pump for simultaneous data centre cooling and district heating using low global warming potential refrigerants. Mitigation and Adaptation Strategies for Global Change 2022:27. https://doi.org/10.1007/s11027-022-10017-6
- Ayou D. S., Wardhana M. F. iq V., Coronas A. Performance analysis of a reversible water/LiBr absorption heat pump connected to district heating network in warm and cold climates. Energy 2023:268:126679. https://doi.org/10.1016/j.energy.2023.126679
- Zhang X., Hu B., Wang R., Xu Z. Performance enhancement of hybrid absorption-compression heat pump via internal heat recovery. Energy 2024:286:129539. https://doi.org/10.1016/j.energy.2023.129539
- Bruno J. C., Usman A. I. Efficient Integration of advanced absorption heat pumps and chillers in District Heating and Cooling networks. 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2023. https://doi.org/10.52202/069564-0079
- Zhang J., Zhang H. H., He Y. L., Tao W. Q. A comprehensive review on advances and applications of industrial heat pumps based on the practices in China. Applied Energy 2016:178:800–825. https://doi.org/10.1016/j.apenergy.2016.06.049
- Johnson Controls. York® YHAP-C absorption heat pumps. 2016, Milwaukee.
- Xu Z., Wang R. Absorption heat pump for waste heat reuse: current states and future development. Frontiers in Energy 2017:11:414–436. https://doi.org/10.1007/s11708-017-0507-1
- Lepiksaar K., Mašatin V., Krupenski I., Volkova A. Effects of Coupling Combined Heat and Power Production with District Cooling. Energies (Basel) 2023:16(12):4552. https://doi.org/10.3390/en16124552
- Pieper H., Kirs T., Krupenski I., Ledvanov A., Lepiksaar K., Volkova A. Efficient use of heat from CHP distributed by district heating system in district cooling networks. Energy Reports 2021:7(S4):47–54. https://doi.org/10.1016/j.egyr.2021.09.041
- OÜ Utilitas. Consolidated Annual Report 2022. [Online]. [Accessed 01.04.2024]. Available: https://www.utilitas.ee/wp-content/uploads/2023/01/Utilitas-Annual-Report-2022_ENG.pdf
- Pieper H. Optimal Integration of District Heating, District Cooling, Heat Sources and Heat Sinks. Technical University of Denmark, Kongens Lyngby, 2019.
- Johnsen K., et al. nordicenergyresearch2021-02.
- Saini P., Huang P., Fiedler F., Volkova A., Zhang X. Techno-economic analysis of a 5th generation district heating system using thermo-hydraulic model: A multi-objective analysis for a case study in heating dominated climate. Energy Build 2023:296:113347. https://doi.org/10.1016/j.enbuild.2023.113347