Have a personal or library account? Click to login
Use of Absorption Heat Pumps to Raise District Cooling Waste Heat Temperature for District Heating Supply in Tallinn: Technical and Economic Analysis Cover

Use of Absorption Heat Pumps to Raise District Cooling Waste Heat Temperature for District Heating Supply in Tallinn: Technical and Economic Analysis

Open Access
|Oct 2024

References

  1. Yao S., Wu J., Qadrdan M. A state-of-the-art analysis and perspectives on the 4<sup>th</sup>/5<sup>th</sup> generation district heating and cooling systems. <em>Renewable and Sustainable Energy Reviews</em> 2024:202:114729. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.rser.2024.114729" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.rser.2024.114729</a>">https://doi.org/10.1016/j.rser.2024.114729</ext-link>
  2. Munćan V., Mujan I., Macura D., Anđelković A. S. The state of district heating and cooling in Europe – A literature-based assessment. <em>Energy</em> 2024:304:132191. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2024.132191" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2024.132191</a>">https://doi.org/10.1016/j.energy.2024.132191</ext-link>
  3. Sorknæs P., <em>et al.</em> The benefits of 4th generation district heating in a 100% renewable energy system. <em>Energy</em> 2020:213:119030. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2020.119030" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2020.119030</a>">https://doi.org/10.1016/j.energy.2020.119030</ext-link>
  4. Li H., Nord N. Transition to the 4th generation district heating – Possibilities, bottlenecks, and challenges. <em>Energy Procedia</em> 2018:149:483–498. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.egypro.2018.08.213" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.egypro.2018.08.213</a>">https://doi.org/10.1016/j.egypro.2018.08.213</ext-link>
  5. Behmane E., Pakere I. Mapping of Energy Consumption for Cooling – Assessment of the Cooling Demand Potential for the City of Riga. <em>Environmental and Climate Technologies</em> 2024:28(1):230–242. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2024-0019" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2024-0019</a>">https://doi.org/10.2478/rtuect-2024-0019</ext-link>
  6. Neri M., Guelpa E., Verda V. Trade-off between optimal design and operation in district cooling networks. <em>Smart Energy</em> 2024:13:100127. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.segy.2023.100127" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.segy.2023.100127</a>">https://doi.org/10.1016/j.segy.2023.100127</ext-link>
  7. Kadam S. T., <em>et al.</em> Thermo-economic and environmental assessment of hybrid vapor compression-absorption refrigeration systems for district cooling. <em>Energy</em> 2022:243:122991. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2021.122991" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2021.122991</a>">https://doi.org/10.1016/j.energy.2021.122991</ext-link>
  8. Lund H., <em>et al.</em> Perspectives on fourth and fifth generation district heating. <em>Energy</em> 2021:227:120520. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2021.120520" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2021.120520</a>">https://doi.org/10.1016/j.energy.2021.120520</ext-link>
  9. Cowley T., Hutty T., Hammond J., Brown S. Achieving emission reduction through the utilisation of local low-grade heat sources in district heating networks. <em>Applied Thermal Engineering</em> 2024:242:122381. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.applthermaleng.2024.122381" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.applthermaleng.2024.122381</a>">https://doi.org/10.1016/j.applthermaleng.2024.122381</ext-link>
  10. Yuan X., Liang Y., Hu X., Xu Y., Chen Y., Kosonen R. Waste heat recoveries in data centers: A review. <em>Renewable and Sustainable Energy Reviews</em> 2023:188:113777. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.rser.2023.113777" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.rser.2023.113777</a>">https://doi.org/10.1016/j.rser.2023.113777</ext-link>
  11. Miškić J., Dorotić H., Pukšec T., Soldo V., Duić N. Optimization of data centre waste heat integration into the low-temperature district heating networks. <em>Optimization and Engineering</em> 2024:25(1):63–91. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s11081-023-09837-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11081-023-09837-5</a>">https://doi.org/10.1007/s11081-023-09837-5</ext-link>
  12. Dorotić H., Čuljak K., Miškić J., Pukšec T., Duić N. Technical and Economic Assessment of Supermarket and Power Substation Waste Heat Integration into Existing District Heating Systems. <em>Energies (Basel)</em> 2022:15(5):1666. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en15051666" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en15051666</a>">https://doi.org/10.3390/en15051666</ext-link>
  13. Jürgens B., <em>et al.</em> Covering District Heating Demand with Waste Heat from Data Centres – A Feasibility Study in Frankfurt, Germany. <em>International Journal of Sustainable Energy Planning and Management</em> 2024:41:58–70. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.54337/ijsepm.8149" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.54337/ijsepm.8149</a>">https://doi.org/10.54337/ijsepm.8149</ext-link>
  14. Wu W., Wang B., Shi W., Li X. Absorption heating technologies: A review and perspective. <em>Applied Energy</em> 2014:130:51–71. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.apenergy.2014.05.027" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.apenergy.2014.05.027</a>">https://doi.org/10.1016/j.apenergy.2014.05.027</ext-link>
  15. Sun F., Zhao X., Hao B. Novel solar-driven low temperature district heating and cooling system based on distributed half-effect absorption heat pumps with lithium bromide. <em>Energy</em> 2023:270:126884. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2023.126884" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2023.126884</a>">https://doi.org/10.1016/j.energy.2023.126884</ext-link>
  16. Lagoeiro Beng H., Maidment G., Curry D., Faulks G., Bielicki J. Heat from Underground Energy London (Heat FUEL). 2019.
  17. He Z., Ding T., Liu Y., Li Z. Analysis of a district heating system using waste heat in a distributed cooling data center. <em>Applied Thermal Engineering</em> 2018:141:1131–1140. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.applthermaleng.2018.06.036" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.applthermaleng.2018.06.036</a>">https://doi.org/10.1016/j.applthermaleng.2018.06.036</ext-link>
  18. Al-Sayyab A. K. S., Navarro-Esbrí J., Barragán-Cervera A., Mota-Babiloni A. Techno-economic analysis of a PV/T waste heat–driven compound ejector-heat pump for simultaneous data centre cooling and district heating using low global warming potential refrigerants. <em>Mitigation and Adaptation Strategies for Global Change</em> 2022:27. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s11027-022-10017-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11027-022-10017-6</a>">https://doi.org/10.1007/s11027-022-10017-6</ext-link>
  19. Ayou D. S., Wardhana M. F. iq V., Coronas A. Performance analysis of a reversible water/LiBr absorption heat pump connected to district heating network in warm and cold climates. <em>Energy</em> 2023:268:126679. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2023.126679" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2023.126679</a>">https://doi.org/10.1016/j.energy.2023.126679</ext-link>
  20. Zhang X., Hu B., Wang R., Xu Z. Performance enhancement of hybrid absorption-compression heat pump via internal heat recovery. <em>Energy</em> 2024:286:129539. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2023.129539" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2023.129539</a>">https://doi.org/10.1016/j.energy.2023.129539</ext-link>
  21. Bruno J. C., Usman A. I. Efficient Integration of advanced absorption heat pumps and chillers in District Heating and Cooling networks. 36<sup>th</sup> International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2023. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.52202/069564-0079" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.52202/069564-0079</a>">https://doi.org/10.52202/069564-0079</ext-link>
  22. Zhang J., Zhang H. H., He Y. L., Tao W. Q. A comprehensive review on advances and applications of industrial heat pumps based on the practices in China. <em>Applied Energy</em> 2016:178:800–825. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.apenergy.2016.06.049" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.apenergy.2016.06.049</a>">https://doi.org/10.1016/j.apenergy.2016.06.049</ext-link>
  23. Johnson Controls. York® YHAP-C absorption heat pumps. 2016, Milwaukee.
  24. Xu Z., Wang R. Absorption heat pump for waste heat reuse: current states and future development. <em>Frontiers in Energy</em> 2017:11:414–436. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s11708-017-0507-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11708-017-0507-1</a>">https://doi.org/10.1007/s11708-017-0507-1</ext-link>
  25. Lepiksaar K., Mašatin V., Krupenski I., Volkova A. Effects of Coupling Combined Heat and Power Production with District Cooling. <em>Energies (Basel)</em> 2023:16(12):4552. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en16124552" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en16124552</a>">https://doi.org/10.3390/en16124552</ext-link>
  26. Pieper H., Kirs T., Krupenski I., Ledvanov A., Lepiksaar K., Volkova A. Efficient use of heat from CHP distributed by district heating system in district cooling networks. <em>Energy Reports</em> 2021:7(S4):47–54. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.egyr.2021.09.041" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.egyr.2021.09.041</a>">https://doi.org/10.1016/j.egyr.2021.09.041</ext-link>
  27. OÜ Utilitas. Consolidated Annual Report 2022. [Online]. [Accessed 01.04.2024]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.utilitas.ee/wp-content/uploads/2023/01/Utilitas-Annual-Report-2022_ENG.pdf">https://www.utilitas.ee/wp-content/uploads/2023/01/Utilitas-Annual-Report-2022_ENG.pdf</ext-link>
  28. Pieper H. Optimal Integration of District Heating, District Cooling, Heat Sources and Heat Sinks. Technical University of Denmark, Kongens Lyngby, 2019.
  29. Johnsen K., <em>et al.</em> nordicenergyresearch2021-02.
  30. Saini P., Huang P., Fiedler F., Volkova A., Zhang X. Techno-economic analysis of a 5th generation district heating system using thermo-hydraulic model: A multi-objective analysis for a case study in heating dominated climate. <em>Energy Build</em> 2023:296:113347. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.enbuild.2023.113347" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enbuild.2023.113347</a>">https://doi.org/10.1016/j.enbuild.2023.113347</ext-link>
DOI: https://doi.org/10.2478/rtuect-2024-0032 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 409 - 421
Submitted on: Mar 15, 2024
Accepted on: Aug 16, 2024
Published on: Oct 1, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2024 Tanel Kirs, Sreenath Sukumaran, Eduard Latõšov, Anna Volkova, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.