Have a personal or library account? Click to login
Use of Absorption Heat Pumps to Raise District Cooling Waste Heat Temperature for District Heating Supply in Tallinn: Technical and Economic Analysis Cover

Use of Absorption Heat Pumps to Raise District Cooling Waste Heat Temperature for District Heating Supply in Tallinn: Technical and Economic Analysis

Open Access
|Oct 2024

References

  1. Yao S., Wu J., Qadrdan M. A state-of-the-art analysis and perspectives on the 4th/5th generation district heating and cooling systems. Renewable and Sustainable Energy Reviews 2024:202:114729. https://doi.org/10.1016/j.rser.2024.114729
  2. Munćan V., Mujan I., Macura D., Anđelković A. S. The state of district heating and cooling in Europe – A literature-based assessment. Energy 2024:304:132191. https://doi.org/10.1016/j.energy.2024.132191
  3. Sorknæs P., et al. The benefits of 4th generation district heating in a 100% renewable energy system. Energy 2020:213:119030. https://doi.org/10.1016/j.energy.2020.119030
  4. Li H., Nord N. Transition to the 4th generation district heating – Possibilities, bottlenecks, and challenges. Energy Procedia 2018:149:483–498. https://doi.org/10.1016/j.egypro.2018.08.213
  5. Behmane E., Pakere I. Mapping of Energy Consumption for Cooling – Assessment of the Cooling Demand Potential for the City of Riga. Environmental and Climate Technologies 2024:28(1):230–242. https://doi.org/10.2478/rtuect-2024-0019
  6. Neri M., Guelpa E., Verda V. Trade-off between optimal design and operation in district cooling networks. Smart Energy 2024:13:100127. https://doi.org/10.1016/j.segy.2023.100127
  7. Kadam S. T., et al. Thermo-economic and environmental assessment of hybrid vapor compression-absorption refrigeration systems for district cooling. Energy 2022:243:122991. https://doi.org/10.1016/j.energy.2021.122991
  8. Lund H., et al. Perspectives on fourth and fifth generation district heating. Energy 2021:227:120520. https://doi.org/10.1016/j.energy.2021.120520
  9. Cowley T., Hutty T., Hammond J., Brown S. Achieving emission reduction through the utilisation of local low-grade heat sources in district heating networks. Applied Thermal Engineering 2024:242:122381. https://doi.org/10.1016/j.applthermaleng.2024.122381
  10. Yuan X., Liang Y., Hu X., Xu Y., Chen Y., Kosonen R. Waste heat recoveries in data centers: A review. Renewable and Sustainable Energy Reviews 2023:188:113777. https://doi.org/10.1016/j.rser.2023.113777
  11. Miškić J., Dorotić H., Pukšec T., Soldo V., Duić N. Optimization of data centre waste heat integration into the low-temperature district heating networks. Optimization and Engineering 2024:25(1):63–91. https://doi.org/10.1007/s11081-023-09837-5
  12. Dorotić H., Čuljak K., Miškić J., Pukšec T., Duić N. Technical and Economic Assessment of Supermarket and Power Substation Waste Heat Integration into Existing District Heating Systems. Energies (Basel) 2022:15(5):1666. https://doi.org/10.3390/en15051666
  13. Jürgens B., et al. Covering District Heating Demand with Waste Heat from Data Centres – A Feasibility Study in Frankfurt, Germany. International Journal of Sustainable Energy Planning and Management 2024:41:58–70. https://doi.org/10.54337/ijsepm.8149
  14. Wu W., Wang B., Shi W., Li X. Absorption heating technologies: A review and perspective. Applied Energy 2014:130:51–71. https://doi.org/10.1016/j.apenergy.2014.05.027
  15. Sun F., Zhao X., Hao B. Novel solar-driven low temperature district heating and cooling system based on distributed half-effect absorption heat pumps with lithium bromide. Energy 2023:270:126884. https://doi.org/10.1016/j.energy.2023.126884
  16. Lagoeiro Beng H., Maidment G., Curry D., Faulks G., Bielicki J. Heat from Underground Energy London (Heat FUEL). 2019.
  17. He Z., Ding T., Liu Y., Li Z. Analysis of a district heating system using waste heat in a distributed cooling data center. Applied Thermal Engineering 2018:141:1131–1140. https://doi.org/10.1016/j.applthermaleng.2018.06.036
  18. Al-Sayyab A. K. S., Navarro-Esbrí J., Barragán-Cervera A., Mota-Babiloni A. Techno-economic analysis of a PV/T waste heat–driven compound ejector-heat pump for simultaneous data centre cooling and district heating using low global warming potential refrigerants. Mitigation and Adaptation Strategies for Global Change 2022:27. https://doi.org/10.1007/s11027-022-10017-6
  19. Ayou D. S., Wardhana M. F. iq V., Coronas A. Performance analysis of a reversible water/LiBr absorption heat pump connected to district heating network in warm and cold climates. Energy 2023:268:126679. https://doi.org/10.1016/j.energy.2023.126679
  20. Zhang X., Hu B., Wang R., Xu Z. Performance enhancement of hybrid absorption-compression heat pump via internal heat recovery. Energy 2024:286:129539. https://doi.org/10.1016/j.energy.2023.129539
  21. Bruno J. C., Usman A. I. Efficient Integration of advanced absorption heat pumps and chillers in District Heating and Cooling networks. 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2023. https://doi.org/10.52202/069564-0079
  22. Zhang J., Zhang H. H., He Y. L., Tao W. Q. A comprehensive review on advances and applications of industrial heat pumps based on the practices in China. Applied Energy 2016:178:800–825. https://doi.org/10.1016/j.apenergy.2016.06.049
  23. Johnson Controls. York® YHAP-C absorption heat pumps. 2016, Milwaukee.
  24. Xu Z., Wang R. Absorption heat pump for waste heat reuse: current states and future development. Frontiers in Energy 2017:11:414–436. https://doi.org/10.1007/s11708-017-0507-1
  25. Lepiksaar K., Mašatin V., Krupenski I., Volkova A. Effects of Coupling Combined Heat and Power Production with District Cooling. Energies (Basel) 2023:16(12):4552. https://doi.org/10.3390/en16124552
  26. Pieper H., Kirs T., Krupenski I., Ledvanov A., Lepiksaar K., Volkova A. Efficient use of heat from CHP distributed by district heating system in district cooling networks. Energy Reports 2021:7(S4):47–54. https://doi.org/10.1016/j.egyr.2021.09.041
  27. OÜ Utilitas. Consolidated Annual Report 2022. [Online]. [Accessed 01.04.2024]. Available: https://www.utilitas.ee/wp-content/uploads/2023/01/Utilitas-Annual-Report-2022_ENG.pdf
  28. Pieper H. Optimal Integration of District Heating, District Cooling, Heat Sources and Heat Sinks. Technical University of Denmark, Kongens Lyngby, 2019.
  29. Johnsen K., et al. nordicenergyresearch2021-02.
  30. Saini P., Huang P., Fiedler F., Volkova A., Zhang X. Techno-economic analysis of a 5th generation district heating system using thermo-hydraulic model: A multi-objective analysis for a case study in heating dominated climate. Energy Build 2023:296:113347. https://doi.org/10.1016/j.enbuild.2023.113347
DOI: https://doi.org/10.2478/rtuect-2024-0032 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 409 - 421
Submitted on: Mar 15, 2024
Accepted on: Aug 16, 2024
Published on: Oct 1, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Tanel Kirs, Sreenath Sukumaran, Eduard Latõšov, Anna Volkova, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.