Have a personal or library account? Click to login
Potential for Solar Industrial Process Heat Systems for Tea Drying Applications – A Case Study Cover

Potential for Solar Industrial Process Heat Systems for Tea Drying Applications – A Case Study

Open Access
|Sep 2024

References

  1. Lingayat A., Balijepalli R., Chandramohan V. P. Applications of solar energy based drying technologies in various industries – A review. <em>Solar Energy</em> 2021:229:52–68. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.solener.2021.05.058" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.solener.2021.05.058</a>">https://doi.org/10.1016/j.solener.2021.05.058</ext-link>
  2. Sharma A., Dutta A. K., Bora M. K., Dutta P. P. Study of energy management in a tea processing industry in Assam. India. AIP Conference Proceedings, 2091. [Online]. [Accessed 13.09.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1063/1.5096503" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1063/1.5096503</a>">https://doi.org/10.1063/1.5096503</ext-link>
  3. Piessou C. O., Owen M. T., Lubkoll M. Pre-feasibility analysis of incorporating non-concentrating solar thermal energy systems in the Kenyan tea industry. Presented at the 5<sup>th</sup> South African Solar Energy Conference, Durban, South Africa, 2018. [Online]. [Accessed 13.09.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.researchgate.net/publication/357826796_pre-feasibility_analysis_of_incorporating_non-concentrating_solar_thermal_energy_systems_in_the_kenyan_tea_industry">https://www.researchgate.net/publication/357826796_pre-feasibility_analysis_of_incorporating_non-concentrating_solar_thermal_energy_systems_in_the_kenyan_tea_industry</ext-link>
  4. REN21. Renewables 2021, Global Status Report (Paris: REN21 Secretariat). ISBN 978-3-948393-03-8. [Online]. [Accessed 03.10.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf">https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf</ext-link>
  5. United Nations Environment Programme. Emissions Gap Report 2022: The Closing Window - Climate crisis calls for rapid transformation of societies. Nairobi, 2022. [Online]. [Accessed 03.10.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.unep.org/emissions-gap-report-2022">https://www.unep.org/emissions-gap-report-2022</ext-link>
  6. IRENA. World Energy Transitions Outlook 2023: 1.5 °C Pathway, International Renewable Energy Agency, Abu Dhabi. [Online]. [Accessed 03.10.2023]. Available: www.irena.org/publications
  7. Weiss W., Spörk-Dür M. Solar Heat Worldwide – Global Market Development and Trends 2021, 2022 Edition. [Online]. [Accessed 23.10.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.iea-shc.org/solar-heat-worldwide">http://www.iea-shc.org/solar-heat-worldwide</ext-link>
  8. Al-Kharabsheh S., Goswami D.Y. Solar distillation and drying. In: C.J. Cleveland (Ed.), Encyclopedia of Energy, New York: Elsevier, 2004. [Online]. [Accessed 03.10.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/B0-12-176480-X/00319-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B0-12-176480-X/00319-3</a>">https://doi.org/10.1016/B0-12-176480-X/00319-3</ext-link>
  9. Solar Heat for Industrial Processes, SHIP Database. [Online]. [Accessed 03.09.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://ship-plants.info/solar-thermal-plants/57-daly-textile-china">http://ship-plants.info/solar-thermal-plants/57-daly-textile-china</ext-link>
  10. Sunbest. Industrial air heating. [Online]. [Accessed 03.09.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.sunbest.solar/industrial-air-heating.php">http://www.sunbest.solar/industrial-air-heating.php</ext-link>
  11. Akello P. O. O., Saoke C. O., Kamau J. N., Jared O. H., Ndeda J. O. H. Modeling and performance analysis of solar parabolic trough collectors for hybrid process heat application in Kenya’s tea industry using system advisor model. <em>Sustainable Energy Research</em> 2023:10:1–15. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1186/s40807-023-00077-w" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/s40807-023-00077-w</a>">https://doi.org/10.1186/s40807-023-00077-w</ext-link>
  12. Fadhel A., Eddhibi F., Charfi K., Balghouthi M. Investigation of a Linear Fresnel solar collector (LFSC) prototype for phosphate drying. <em>Energy Nexus</em> 2023:10:100188. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.nexus.2023.100188" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.nexus.2023.100188</a>">https://doi.org/10.1016/j.nexus.2023.100188</ext-link>
  13. Famiglietti A., Lecuona A., Rahjoo M. Nogueira-Goriba J. Solar hot air for industrial applications using linear Fresnel concentrating collectors and open Brayton cycle layout. <em>E3S Web of Conferences</em> 2021:238:01003. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1051/e3sconf/202123801003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1051/e3sconf/202123801003</a>">https://doi.org/10.1051/e3sconf/202123801003</ext-link>
  14. Hage H. E., Herez A., Ramadan M., Bazzi H., Khaled M. An investigation on solar drying: A review with economic and environmental assessment. <em>Energy</em> 2018:157:815-829. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2018.05.197" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2018.05.197</a>">https://doi.org/10.1016/j.energy.2018.05.197</ext-link>
  15. Amer B. M. A., Gottschalk K., Hossain M. A. Integrated hybrid solar drying system and its drying kinetics of chamomile. <em>Renewable Energy</em> 2018:121:539–547. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.renene.2018.01.055" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.renene.2018.01.055</a>">https://doi.org/10.1016/j.renene.2018.01.055</ext-link>
  16. Kalogirou S. A. Industrial Process Heat, Chemistry Applications, and Solar Dryers. In: Kalogirou, S. A., <em>Solar Energy Engineering</em>. Boston: Academic Press, 2014. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/B978-0-12-397270-5.00007-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-12-397270-5.00007-8</a>">https://doi.org/10.1016/B978-0-12-397270-5.00007-8</ext-link>
  17. Suresh B. V., Shireesha Y., Kishore T. S., Dwivedi G., Haghighi A. T., Patro E. R. Natural energy materials and storage systems for solar dryers: State of the art. <em>Solar Energy Materials &amp; Solar Cells</em> 2023:255:112276. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.solmat.2023.112276" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.solmat.2023.112276</a>">https://doi.org/10.1016/j.solmat.2023.112276</ext-link>
  18. Jiang K., Liu H., Li K. Amine-based thermal energy storage system towards industrial application, <em>Energy Conversion and Management</em> 2023:283:116954. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.enconman.2023.116954" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enconman.2023.116954</a>">https://doi.org/10.1016/j.enconman.2023.116954</ext-link>
  19. IRENA. Innovation Outlook: Thermal Energy Storage, International Renewable Energy Agency, Abu Dhabi. ISBN 978-92-9260-279-6. [Online]. [Accessed 13.10.2023]. Available: www.irena.org/publications
  20. Mahon H., O’Connor D., Friedrich D., Hughes B. A review of thermal energy storage technologies for seasonal loops. <em>Energy</em> 2022:239:22207. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2021.122207" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2021.122207</a>">https://doi.org/10.1016/j.energy.2021.122207</ext-link>
  21. Zalba B., Marin J. M., Cabeza L. F., Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. <em>Applied Thermal Engineering</em> 2003:23(3):251–283. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S1359-4311(02)00192-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S1359-4311(02)00192-8</a>">https://doi.org/10.1016/S1359-4311(02)00192-8</ext-link>
  22. Bauer T., Wolf-Dieter S., Laing D., Tamme R. Thermal energy storage materials and systems. <em>Annual Review of Heat Transfer</em> 2012:15:131–177. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1615/AnnualRevHeatTransfer.2012004651" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1615/AnnualRevHeatTransfer.2012004651</a>">https://doi.org/10.1615/AnnualRevHeatTransfer.2012004651</ext-link>
  23. Chavan S., Rudrapati R., Manickam S. A comprehensive review on current advances of thermal energy storage and its applications. <em>Alexandria Engineering Journal</em> 2022:61(7):5455–5463. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.aej.2021.11.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.aej.2021.11.003</a>">https://doi.org/10.1016/j.aej.2021.11.003</ext-link>
  24. Stutz B., Pierrès N., Kuznik F., Johannes K., Del Barrio, E. P., Bedecarrats J. P, Gibout S., Marty P., Zalewski L., Soto J., Mazet N., Olives R., Bézian J. J., Minh D. P. Storage of thermal solar energy. <em>Comptes Rendus Physique</em> 2017:18(7–8):401–414. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.crhy.2017.09.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.crhy.2017.09.008</a>">https://doi.org/10.1016/j.crhy.2017.09.008</ext-link>
  25. Alva G., Lin Y. Fang G. An overview of thermal energy storage systems. <em>Energy</em> 2018:144:341–378. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2017.12.037" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2017.12.037</a>">https://doi.org/10.1016/j.energy.2017.12.037</ext-link>
  26. Alami K. E., Asbik M., Agalit H. Identification of natural rocks as storage materials in thermal energy storage (TES) system of concentrated solar power (CSP) plants – a review. <em>Solar Energy Materials &amp; Sol. Cells</em> 2020:217:110599. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.solmat.2020.110599" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.solmat.2020.110599</a>">https://doi.org/10.1016/j.solmat.2020.110599</ext-link>
  27. Tiskatine R., Aharoune A., Bouirden L. Ihlal A. Identification of suitable storage materials for solar thermal power plant using selection methodology. <em>Applied Thermal Engineering</em> 2017:117:591–608. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.applthermaleng.2017.01.107" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.applthermaleng.2017.01.107</a>">https://doi.org/10.1016/j.applthermaleng.2017.01.107</ext-link>
  28. Jemmal Y., Zari N. Maaroufi M. Thermophysical and chemical analysis of gneiss rock as low-cost candidate material for thermal energy storage in concentrated solar power plants. <em>Solar Energy Materials &amp; Sol. Cells</em> 2016:157:377– 382. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.solmat.2016.06.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.solmat.2016.06.002</a>">https://doi.org/10.1016/j.solmat.2016.06.002</ext-link>
  29. Kamfa I., Fluch J., Bartali R., Baker D. Solar-thermal driven drying technologies for large-scale industrial applications: State of the art, gaps, and opportunities. <em>International Journal of Energy Research</em> 2020:44:9864–9888. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://onlinelibrary.wiley.com/doi/10.1002/er.5622">https://onlinelibrary.wiley.com/doi/10.1002/er.5622</ext-link>
  30. Ziuku S., Seyitini L., Mapurisa B., Chikodzi D., van Kuijk K. Potential of Concentrated Solar Power (CSP) in Zimbabwe. <em>Energy for Sustainable Development</em> 2014:23:220–227. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.esd.2014.07.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.esd.2014.07.006</a>">https://doi.org/10.1016/j.esd.2014.07.006</ext-link>
  31. Belgasim B., Aldali Y., Abdunnabi M. J. R., Hashem G., Hossin K. The potential of concentrating solar power (CSP) for electricity generation in Libya. <em>Renewable and Sustainable Energy Reviews</em> 2018:90:1–15. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.rser.2018.03.045" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.rser.2018.03.045</a>">https://doi.org/10.1016/j.rser.2018.03.045</ext-link>
  32. Schenk H., Hirsch T., Feldhoff J. F., Wittmann M. Energetic Comparison of linear Fresnel and parabolic trough collector systems. <em>Journal of Solar Energy Engineering</em> 2014:136:041015. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1115/1.4027766" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1115/1.4027766</a>">https://doi.org/10.1115/1.4027766</ext-link>
  33. Wagner M. J. Results and comparison from the SAM linear Fresnel technology performance model. Presented at the World Renewable Energy Forum, Denver, Colorado, USA (2012). [Online]. [Accessed 03.09.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.nrel.gov/docs/fy12osti/54758.pdf">https://www.nrel.gov/docs/fy12osti/54758.pdf</ext-link>
  34. Marugán-Cruz C., Serrano D., Gómez-Hernández J., Sánchez-Delgado S. Solar multiple optimization of a DSG linear Fresnel power plant. <em>Energy Conversion and Management</em> 2019:184:571–580. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.enconman.2019.01.054" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enconman.2019.01.054</a>">https://doi.org/10.1016/j.enconman.2019.01.054</ext-link>
  35. Freund P., Bachu S., Simbeck D., Thambimuthu K., Gupta, M. Annex I: Properties of CO<sub>2</sub> and carbon-based fuels. IPCC Special Report on Carbon dioxide Capture and Storage. [Online]. [Accessed 23.09.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.ipcc.ch/site/assets/uploads/2018/03/srccs_annex1-1.pdf">https://www.ipcc.ch/site/assets/uploads/2018/03/srccs_annex1-1.pdf</ext-link>
DOI: https://doi.org/10.2478/rtuect-2024-0026 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 329 - 341
Submitted on: Nov 26, 2023
Accepted on: Aug 29, 2024
Published on: Sep 7, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2024 Luckywell Seyitini, Christopher Enweremadu, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.