Have a personal or library account? Click to login
Potential for Solar Industrial Process Heat Systems for Tea Drying Applications – A Case Study Cover

Potential for Solar Industrial Process Heat Systems for Tea Drying Applications – A Case Study

Open Access
|Sep 2024

References

  1. Lingayat A., Balijepalli R., Chandramohan V. P. Applications of solar energy based drying technologies in various industries – A review. Solar Energy 2021:229:52–68. https://doi.org/10.1016/j.solener.2021.05.058
  2. Sharma A., Dutta A. K., Bora M. K., Dutta P. P. Study of energy management in a tea processing industry in Assam. India. AIP Conference Proceedings, 2091. [Online]. [Accessed 13.09.2023]. Available: https://doi.org/10.1063/1.5096503
  3. Piessou C. O., Owen M. T., Lubkoll M. Pre-feasibility analysis of incorporating non-concentrating solar thermal energy systems in the Kenyan tea industry. Presented at the 5th South African Solar Energy Conference, Durban, South Africa, 2018. [Online]. [Accessed 13.09.2023]. Available: https://www.researchgate.net/publication/357826796_pre-feasibility_analysis_of_incorporating_non-concentrating_solar_thermal_energy_systems_in_the_kenyan_tea_industry
  4. REN21. Renewables 2021, Global Status Report (Paris: REN21 Secretariat). ISBN 978-3-948393-03-8. [Online]. [Accessed 03.10.2023]. Available: https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf
  5. United Nations Environment Programme. Emissions Gap Report 2022: The Closing Window - Climate crisis calls for rapid transformation of societies. Nairobi, 2022. [Online]. [Accessed 03.10.2023]. Available: https://www.unep.org/emissions-gap-report-2022
  6. IRENA. World Energy Transitions Outlook 2023: 1.5 °C Pathway, International Renewable Energy Agency, Abu Dhabi. [Online]. [Accessed 03.10.2023]. Available: www.irena.org/publications
  7. Weiss W., Spörk-Dür M. Solar Heat Worldwide – Global Market Development and Trends 2021, 2022 Edition. [Online]. [Accessed 23.10.2023]. Available: http://www.iea-shc.org/solar-heat-worldwide
  8. Al-Kharabsheh S., Goswami D.Y. Solar distillation and drying. In: C.J. Cleveland (Ed.), Encyclopedia of Energy, New York: Elsevier, 2004. [Online]. [Accessed 03.10.2023]. Available: https://doi.org/10.1016/B0-12-176480-X/00319-3
  9. Solar Heat for Industrial Processes, SHIP Database. [Online]. [Accessed 03.09.2023]. Available: http://ship-plants.info/solar-thermal-plants/57-daly-textile-china
  10. Sunbest. Industrial air heating. [Online]. [Accessed 03.09.2023]. Available: http://www.sunbest.solar/industrial-air-heating.php
  11. Akello P. O. O., Saoke C. O., Kamau J. N., Jared O. H., Ndeda J. O. H. Modeling and performance analysis of solar parabolic trough collectors for hybrid process heat application in Kenya’s tea industry using system advisor model. Sustainable Energy Research 2023:10:1–15. https://doi.org/10.1186/s40807-023-00077-w
  12. Fadhel A., Eddhibi F., Charfi K., Balghouthi M. Investigation of a Linear Fresnel solar collector (LFSC) prototype for phosphate drying. Energy Nexus 2023:10:100188. https://doi.org/10.1016/j.nexus.2023.100188
  13. Famiglietti A., Lecuona A., Rahjoo M. Nogueira-Goriba J. Solar hot air for industrial applications using linear Fresnel concentrating collectors and open Brayton cycle layout. E3S Web of Conferences 2021:238:01003. https://doi.org/10.1051/e3sconf/202123801003
  14. Hage H. E., Herez A., Ramadan M., Bazzi H., Khaled M. An investigation on solar drying: A review with economic and environmental assessment. Energy 2018:157:815-829. https://doi.org/10.1016/j.energy.2018.05.197
  15. Amer B. M. A., Gottschalk K., Hossain M. A. Integrated hybrid solar drying system and its drying kinetics of chamomile. Renewable Energy 2018:121:539–547. https://doi.org/10.1016/j.renene.2018.01.055
  16. Kalogirou S. A. Industrial Process Heat, Chemistry Applications, and Solar Dryers. In: Kalogirou, S. A., Solar Energy Engineering. Boston: Academic Press, 2014. https://doi.org/10.1016/B978-0-12-397270-5.00007-8
  17. Suresh B. V., Shireesha Y., Kishore T. S., Dwivedi G., Haghighi A. T., Patro E. R. Natural energy materials and storage systems for solar dryers: State of the art. Solar Energy Materials & Solar Cells 2023:255:112276. https://doi.org/10.1016/j.solmat.2023.112276
  18. Jiang K., Liu H., Li K. Amine-based thermal energy storage system towards industrial application, Energy Conversion and Management 2023:283:116954. https://doi.org/10.1016/j.enconman.2023.116954
  19. IRENA. Innovation Outlook: Thermal Energy Storage, International Renewable Energy Agency, Abu Dhabi. ISBN 978-92-9260-279-6. [Online]. [Accessed 13.10.2023]. Available: www.irena.org/publications
  20. Mahon H., O’Connor D., Friedrich D., Hughes B. A review of thermal energy storage technologies for seasonal loops. Energy 2022:239:22207. https://doi.org/10.1016/j.energy.2021.122207
  21. Zalba B., Marin J. M., Cabeza L. F., Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering 2003:23(3):251–283. https://doi.org/10.1016/S1359-4311(02)00192-8
  22. Bauer T., Wolf-Dieter S., Laing D., Tamme R. Thermal energy storage materials and systems. Annual Review of Heat Transfer 2012:15:131–177. https://doi.org/10.1615/AnnualRevHeatTransfer.2012004651
  23. Chavan S., Rudrapati R., Manickam S. A comprehensive review on current advances of thermal energy storage and its applications. Alexandria Engineering Journal 2022:61(7):5455–5463. https://doi.org/10.1016/j.aej.2021.11.003
  24. Stutz B., Pierrès N., Kuznik F., Johannes K., Del Barrio, E. P., Bedecarrats J. P, Gibout S., Marty P., Zalewski L., Soto J., Mazet N., Olives R., Bézian J. J., Minh D. P. Storage of thermal solar energy. Comptes Rendus Physique 2017:18(7–8):401–414. https://doi.org/10.1016/j.crhy.2017.09.008
  25. Alva G., Lin Y. Fang G. An overview of thermal energy storage systems. Energy 2018:144:341–378. https://doi.org/10.1016/j.energy.2017.12.037
  26. Alami K. E., Asbik M., Agalit H. Identification of natural rocks as storage materials in thermal energy storage (TES) system of concentrated solar power (CSP) plants – a review. Solar Energy Materials & Sol. Cells 2020:217:110599. https://doi.org/10.1016/j.solmat.2020.110599
  27. Tiskatine R., Aharoune A., Bouirden L. Ihlal A. Identification of suitable storage materials for solar thermal power plant using selection methodology. Applied Thermal Engineering 2017:117:591–608. https://doi.org/10.1016/j.applthermaleng.2017.01.107
  28. Jemmal Y., Zari N. Maaroufi M. Thermophysical and chemical analysis of gneiss rock as low-cost candidate material for thermal energy storage in concentrated solar power plants. Solar Energy Materials & Sol. Cells 2016:157:377– 382. https://doi.org/10.1016/j.solmat.2016.06.002
  29. Kamfa I., Fluch J., Bartali R., Baker D. Solar-thermal driven drying technologies for large-scale industrial applications: State of the art, gaps, and opportunities. International Journal of Energy Research 2020:44:9864–9888. https://onlinelibrary.wiley.com/doi/10.1002/er.5622
  30. Ziuku S., Seyitini L., Mapurisa B., Chikodzi D., van Kuijk K. Potential of Concentrated Solar Power (CSP) in Zimbabwe. Energy for Sustainable Development 2014:23:220–227. https://doi.org/10.1016/j.esd.2014.07.006
  31. Belgasim B., Aldali Y., Abdunnabi M. J. R., Hashem G., Hossin K. The potential of concentrating solar power (CSP) for electricity generation in Libya. Renewable and Sustainable Energy Reviews 2018:90:1–15. https://doi.org/10.1016/j.rser.2018.03.045
  32. Schenk H., Hirsch T., Feldhoff J. F., Wittmann M. Energetic Comparison of linear Fresnel and parabolic trough collector systems. Journal of Solar Energy Engineering 2014:136:041015. https://doi.org/10.1115/1.4027766
  33. Wagner M. J. Results and comparison from the SAM linear Fresnel technology performance model. Presented at the World Renewable Energy Forum, Denver, Colorado, USA (2012). [Online]. [Accessed 03.09.2023]. Available: https://www.nrel.gov/docs/fy12osti/54758.pdf
  34. Marugán-Cruz C., Serrano D., Gómez-Hernández J., Sánchez-Delgado S. Solar multiple optimization of a DSG linear Fresnel power plant. Energy Conversion and Management 2019:184:571–580. https://doi.org/10.1016/j.enconman.2019.01.054
  35. Freund P., Bachu S., Simbeck D., Thambimuthu K., Gupta, M. Annex I: Properties of CO2 and carbon-based fuels. IPCC Special Report on Carbon dioxide Capture and Storage. [Online]. [Accessed 23.09.2023]. Available: https://www.ipcc.ch/site/assets/uploads/2018/03/srccs_annex1-1.pdf
DOI: https://doi.org/10.2478/rtuect-2024-0026 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 329 - 341
Submitted on: Nov 26, 2023
Accepted on: Aug 29, 2024
Published on: Sep 7, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Luckywell Seyitini, Christopher Enweremadu, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.