Have a personal or library account? Click to login
Bibliometric Analysis of the Modelling of LowQuality Biomass Pellets Combustion Cover

Bibliometric Analysis of the Modelling of LowQuality Biomass Pellets Combustion

Open Access
|Aug 2024

References

  1. 40 – Heat energy, in <em>Newnes Engineering and Physical Science Pocket Book</em>. Bird J. O., Chivers P. J. (Eds.), Newnes, 1993:307–313. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/B978-0-7506-1683-6.50043-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-7506-1683-6.50043-6</a>">https://doi.org/10.1016/B978-0-7506-1683-6.50043-6</ext-link>
  2. Belyakov N. Chapter One – Concept of energy, in <em>Sustainable Power Generation,</em> Academic Press, 2019:3–22. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/B978-0-12-817012-0.00010-4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-12-817012-0.00010-4</a>">https://doi.org/10.1016/B978-0-12-817012-0.00010-4</ext-link>
  3. Akram M. W., Hasanuzzaman M. Chapter 1 – Fundamentals of thermal energy and solar system integration. In <em>Technologies for Solar Thermal Energy</em>, M. Hasanuzzaman, (Ed.), Academic Press 2022:1–24. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/B978-0-12-823959-9.00003-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-12-823959-9.00003-9</a>">https://doi.org/10.1016/B978-0-12-823959-9.00003-9</ext-link>
  4. Islas J., Manzini F., Masera O., Vargas V. Chapter Four – Solid Biomass to Heat and Power, in <em>The Role of Bioenergy in the Bioeconomy</em>. Lago C., Caldés N., Lechón Y. (Eds.), Academic Press 2019:145–177. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/B978-0-12-813056-8.00004-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-12-813056-8.00004-2</a>">https://doi.org/10.1016/B978-0-12-813056-8.00004-2</ext-link>
  5. Fitts C. R. Chapter 12 – Subsurface heat flow and geothermal energy, in <em>Groundwater Science (Third Edition).</em> Fitts C. R., (Ed.), Academic Press 2024:581–612. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/B978-0-12-811455-1.00018-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-12-811455-1.00018-6</a>">https://doi.org/10.1016/B978-0-12-811455-1.00018-6</ext-link>
  6. Pudasainee D., Kurian V., Gupta R. 2 – Coal: Past, Present, and Future Sustainable Use. In <em>Future Energy (Third Edition)</em>, Letcher T. M., (Ed.), Elsevier, 2020:21–48. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/B978-0-08-102886-5.00002-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-08-102886-5.00002-5</a>">https://doi.org/10.1016/B978-0-08-102886-5.00002-5</ext-link>
  7. Yin C. 4 – Coal and biomass cofiring: CFD modelling. In <em>New Trends in Coal Conversion</em>. Suárez-Ruiz I., Diez M. A., Rubiera F. (Eds.), Woodhead Publishing 2019:89–116. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/B978-0-08-102201-6.00004-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-08-102201-6.00004-2</a>">https://doi.org/10.1016/B978-0-08-102201-6.00004-2</ext-link>
  8. Caillat S., Vakkilainen E. 9 – Large-scale biomass combustion plants: an overview. In <em>Biomass Combustion Science, Technology and Engineering.</em> Rosendahl L., (Ed.), In Woodhead Publishing Series in Energy. Woodhead Publishing, 2013:189–224. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1533/9780857097439.3.189" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1533/9780857097439.3.189</a>">https://doi.org/10.1533/9780857097439.3.189</ext-link>
  9. Zhou L. Chapter 3 – Fundamentals of Combustion Theory. In <em>Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows</em>. Zhou L., (Ed.), Butterworth-Heinemann, 2018:15–70. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/B978-0-12-813465-8.00003-X" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-12-813465-8.00003-X</a>">https://doi.org/10.1016/B978-0-12-813465-8.00003-X</ext-link>
  10. Chong C. T., Ng J.-H. Chapter 4 – Combustion performance of biojet fuels. In <em>Biojet Fuel in Aviation Applications</em>, Chong C. T., Ng J.-H., (Eds.), Elsevier, 2021:175–230. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/B978-0-12-822854-8.00002-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-12-822854-8.00002-0</a>">https://doi.org/10.1016/B978-0-12-822854-8.00002-0</ext-link>
  11. Okawa T., <em>et al.</em> 3 – Fundamentals for power engineering. In <em>Fundamentals of Thermal and Nuclear Power Generation</em>, vol. 1, Koizumi Y., Okawa T., Mori S. (Eds.), in JSME Series in Thermal and Nuclear Power Generation. Elsevier, 2021:77–226. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/B978-0-12-820733-8.00003-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-12-820733-8.00003-0</a>">https://doi.org/10.1016/B978-0-12-820733-8.00003-0</ext-link>
  12. Jenkins R. G. Chapter 16 – Thermal Gasification of Biomass – A Primer. In <em>Bioenergy</em>, Dahiya A., (Ed.), Boston: Academic Press, 2015:261–286. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/B978-0-12-407909-0.00016-X" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-12-407909-0.00016-X</a>">https://doi.org/10.1016/B978-0-12-407909-0.00016-X</ext-link>
  13. Morales-Máximo M., <em>et al.</em> Multifactorial Assessment of the Bioenergetic Potential of Residual Biomass of Pinus spp. in a Rural Community: From Functional Characterization to Mapping of the Available Energy Resource. <em>Fire</em> 2023:6(8):317. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/fire6080317" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/fire6080317</a>">https://doi.org/10.3390/fire6080317</ext-link>
  14. Dincer I., Rosen M. A. Chapter 3 – Industrial Heating and Cooling Systems, in <em>Exergy Analysis of Heating, Refrigerating and Air Conditioning</em>. Dincer I., Rosen M. A. (Eds.), Boston: Elsevier, 2015:99–129. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/B978-0-12-417203-6.00003-X" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-12-417203-6.00003-X</a>">https://doi.org/10.1016/B978-0-12-417203-6.00003-X</ext-link>
  15. Sehili Y., Loubar K., Tarabet L., Cerdoun M., Lacroix C. Computational Investigation of the Influence of Combustion Chamber Characteristics on a Heavy-Duty Ammonia Diesel Dual Fuel Engine. <em>Energies (Basel)</em> 2024:17(5):1231. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en17051231" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en17051231</a>">https://doi.org/10.3390/en17051231</ext-link>
  16. Tolley A. 10 – Heavy-duty vehicles and powertrains: technologies and systems that enable “zero” air quality and greenhouse gas emissions with enhanced levels of efficiency, in <em>Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance (Second Edition)</em>, Folkson R., Sapsford S. (Eds.), in Woodhead Publishing Series in Energy. Woodhead Publishing 2022:263–289. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/B978-0-323-90979-2.00014-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-323-90979-2.00014-7</a>">https://doi.org/10.1016/B978-0-323-90979-2.00014-7</ext-link>
  17. Keiner D., <em>et al.</em> Global‐local heat demand development for the energy transition time frame up to 2050. <em>Energies (Basel)</em> 2021:14(13):3814. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en14133814" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en14133814</a>">https://doi.org/10.3390/en14133814</ext-link>
  18. Santamouris M., Vasilakopoulou K. Present and future energy consumption of buildings: Challenges and opportunities towards decarbonisation. <em>e-Prime – Advances in Electrical Engineering, Electronics and Energy</em> 2021:1:100002. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.prime.2021.100002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.prime.2021.100002</a>">https://doi.org/10.1016/j.prime.2021.100002</ext-link>
  19. Hasanuzzaman M., Islam M. A., Rahim N. A., Yanping Y. Chapter 3 – Energy demand. In <em>Energy for Sustainable Development</em>. Hasanuzzaman M. D., Rahim N. A. (Eds.), Academic Press 2020:41–87. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/B978-0-12-814645-3.00003-1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-12-814645-3.00003-1</a>">https://doi.org/10.1016/B978-0-12-814645-3.00003-1</ext-link>
  20. Mcmillan C., Boardman R., Mckellar M., Sabharwall P., Ruth M., Bragg-Sitton S. Generation and Use of Thermal Energy in the U.S. Industrial Sector and Opportunities to Reduce its Carbon Emissions. 2016. [Online]. [Accessed: 28.03.2024]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.inl.gov">http://www.inl.gov</ext-link>
  21. Ong B. H. Y., Bhadbhade N., Olsen D. G., Wellig B. Characterizing sector-wide thermal energy profiles for industrial sectors. <em>Energy</em> 2023:282:129028. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2023.129028" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2023.129028</a>">https://doi.org/10.1016/j.energy.2023.129028</ext-link>
  22. Zhang S., <em>et al.</em> Study on global industrialization and industry emission to achieve the 2 °C goal based on message model and LMDI approach. <em>Energies (Basel)</em> 2020:13(4). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en13040825" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en13040825</a>">https://doi.org/10.3390/en13040825</ext-link>
  23. Chanthakett A., Arif M. T., Khan M. M. K., Subhani M. Chapter 4 – Hydrogen production from municipal solid waste using gasification method. In <em>Hydrogen Energy Conversion and Management</em>. Khan M. M. K., Azad A. K., Oo A. M. T. (Eds.), Elsevier, 2024:103–131. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/B978-0-443-15329-7.00012-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-443-15329-7.00012-0</a>">https://doi.org/10.1016/B978-0-443-15329-7.00012-0</ext-link>
  24. Kud K., Woźniak M., Badora A. Impact of the energy sector on the quality of the environment in the opinion of energy consumers from southeastern Poland. <em>Energies (Basel)</em> 2021:14(17). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en14175551" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en14175551</a>">https://doi.org/10.3390/en14175551</ext-link>
  25. Syrtsova E., Pyzhev A., Zander E. Social, Economic, and Environmental Effects of Electricity and Heat Generation in Yenisei Siberia: Is there an Alternative to Coal? <em>Energies (Basel)</em> 2023:16(1). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en16010212" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en16010212</a>">https://doi.org/10.3390/en16010212</ext-link>
  26. Klavins M., Bisters V., Burlakovs J. Small scale gasification application and perspectives in circular economy. <em>Environmental and Climate Technologies</em> 2020:22(1):42–54. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2018-0003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2018-0003</a>">https://doi.org/10.2478/rtuect-2018-0003</ext-link>
  27. Wang Z., Luther M. B., Amirkhani M., Liu C., Horan P. State of the art on heat pumps for residential buildings. <em>Buildings</em> 2021:11(8):350. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/buildings11080350" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/buildings11080350</a>">https://doi.org/10.3390/buildings11080350</ext-link>
  28. Kwon Y., Bae S., Nam Y. Development of Design Method for River Water Source Heat Pump System Using an Optimization Algorithm. <em>Energies (Basel)</em> 2022:15(11):4019. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en15114019" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en15114019</a>">https://doi.org/10.3390/en15114019</ext-link>
  29. Soltani M., <em>et al.</em> Environmental, economic, and social impacts of geothermal energy systems. <em>Renewable and Sustainable Energy Reviews</em> 2021:140:110750. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.rser.2021.110750" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.rser.2021.110750</a>">https://doi.org/10.1016/j.rser.2021.110750</ext-link>
  30. Chomać-Pierzecka E., Sobczak A., Soboń D. The Potential and Development of the Geothermal Energy Market in Poland and the Baltic States—Selected Aspects. <em>Energies (Basel)</em> 2022:15(11):4142. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en15114142" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en15114142</a>">https://doi.org/10.3390/en15114142</ext-link>
  31. Pakere I., Blumberga D. Solar Energy in Low Temperature District Heating. <em>Environmental and Climate Technologies</em> 2019:23(3):147–158. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2019-0085" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2019-0085</a>">https://doi.org/10.2478/rtuect-2019-0085</ext-link>
  32. Sukumaran S., Laht J., Volkova A. Overview of Solar Photovoltaic Applications for District Heating and Cooling. <em>Environmental and Climate Technologies</em> 2023:27(1):964–979. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2023-0070" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2023-0070</a>">https://doi.org/10.2478/rtuect-2023-0070</ext-link>.
  33. Bohvalovs G., Vanaga R., Brakovska V., Freimanis R., Blumberga A. Energy Community Measures Evaluation via Differential Evolution Optimization. <em>Environmental and Climate Technologies</em> 2022:26(1):606–615. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2022-0046" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2022-0046</a>">https://doi.org/10.2478/rtuect-2022-0046</ext-link>
  34. Narbuts J., Vanaga R. Revolutionizing the Building Envelope: A Comprehensive Scientific Review of Innovative Technologies for Reduced Emissions. <em>Environmental and Climate Technologies</em> 2023:27(1):724–737. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2023-0053" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2023-0053</a>">https://doi.org/10.2478/rtuect-2023-0053</ext-link>
  35. Albatayneh A., Alterman D., Page A., Moghtaderi B. The significance of temperature based approach over the energy based approaches in the buildings thermal assessment. <em>Environmental and Climate Technologies</em> 2017:19(1):39–50. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1515/rtuect-2017-0004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1515/rtuect-2017-0004</a>">https://doi.org/10.1515/rtuect-2017-0004</ext-link>
  36. Nagpal H., Spriet J., Murali M. K., McNabola A. Heat recovery from wastewater – A review of available resource. <em>Water (Switzerland)</em> 2021:13(9):1274. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/w13091274" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/w13091274</a>">https://doi.org/10.3390/w13091274</ext-link>
  37. Wehbi Z., Taher R., Faraj J., Lemenand T., Mortazavi M., Khaled M. Waste Water Heat Recovery Systems types and applications: Comprehensive review, critical analysis, and potential recommendations. <em>Energy Reports</em> 2023:9:16–33. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.egyr.2023.05.243" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.egyr.2023.05.243</a>">https://doi.org/10.1016/j.egyr.2023.05.243</ext-link>
  38. Yuan X., Liang Y., Hu X., Xu Y., Chen Y., Kosonen R. Waste heat recoveries in data centers: A review. <em>Renewable and Sustainable Energy Reviews</em> 2023:188:113777. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.rser.2023.113777" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.rser.2023.113777</a>">https://doi.org/10.1016/j.rser.2023.113777</ext-link>
  39. Narloch P., Rosicki Ł. Using waste heat from data centers in different climate zones. <em>Builder</em> 2020:272(3):56–59. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.5604/01.3001.0013.8482" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5604/01.3001.0013.8482</a>">https://doi.org/10.5604/01.3001.0013.8482</ext-link>
  40. Abugabbara M. Modelling and Simulation of the Fifth-Generation District Heating and Cooling. Thesis for: Licentiate degree. Technical University of Denmark. 2021. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.13140/RG.2.2.18483.96809" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.13140/RG.2.2.18483.96809</a>">https://doi.org/10.13140/RG.2.2.18483.96809</ext-link>
  41. Lazarou S., Christodoulou C., Vita V. Global Change Assessment Model (GCAM) considerations of the primary sources energy mix for an energetic scenario that could meet Paris agreement. In 2019 54<sup>th</sup> International Universities Power Engineering Conference, UPEC 2019 – Proceedings. Institute of Electrical and Electronics Engineers Inc., Sep. 2019. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1109/UPEC.2019.8893507" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/UPEC.2019.8893507</a>">https://doi.org/10.1109/UPEC.2019.8893507</ext-link>
  42. Ekpeni L. E. N., Benyounis K. Y., Nkem-Ekpeni F., Stokes J., Olabi A. G. Energy Diversity through Renewable Energy Source (RES) – A Case Study of Biomass. <em>Energy Procedia</em> 2014:61:1740–1747. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.egypro.2014.12.202" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.egypro.2014.12.202</a>">https://doi.org/10.1016/j.egypro.2014.12.202</ext-link>
  43. Andreev O., Lomakina O., Aleksandrova A. Diversification of structural and crisis risks in the energy sector of the ASEAN member countries. <em>Energy Strategy Reviews</em> 2021:35:100655. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.esr.2021.100655" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.esr.2021.100655</a>">https://doi.org/10.1016/j.esr.2021.100655</ext-link>
  44. Ślusarz G., Gołębiewska B., Cierpiał-Wolan M., Gołębiewski J., Twaróg D., Wójcik S. Regional diversification of potential, production and efficiency of use of biogas and biomass in Poland. <em>Energies (Basel)</em> 2021:14(3):742. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en14030742" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en14030742</a>">https://doi.org/10.3390/en14030742</ext-link>
  45. Li J., Yang L., Long H. Climatic impacts on energy consumption: Intensive and extensive margins. <em>Energy Economics</em> 2018:71:332–343. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.eneco.2018.03.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.eneco.2018.03.010</a>">https://doi.org/10.1016/j.eneco.2018.03.010</ext-link>
  46. Botzen W. J. W., Nees T., Estrada F. Temperature effects on electricity and gas consumption: Empirical evidence from mexico and projections under future climate conditions. <em>Sustainability (Switzerland)</em> 2021:13(1):1–28. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/su13010305" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/su13010305</a>">https://doi.org/10.3390/su13010305</ext-link>
  47. Hepf C., Gottkehaskamp B., Miller C., Auer T. International Comparison of Weather and Emission Predictive Building Control. <em>Buildings</em> 2024:14(1):288. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/buildings14010288" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/buildings14010288</a>">https://doi.org/10.3390/buildings14010288</ext-link>
  48. Geikins A., Borodinecs A., Daksa G., Bogdanovics R., Zajecs D. Typology of Unclassified Buildings and Specifics of Input Parameters for Energy Audits in Latvia. In <em>IOP Conference Series: Earth and Environmental Science Institute of Physics Publishing</em>, June 2019. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1088/1755-1315/290/1/012131" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1088/1755-1315/290/1/012131</a>">https://doi.org/10.1088/1755-1315/290/1/012131</ext-link>.
  49. Olsson D., Filipsson P., Trüschel A. Weather Forecast Control for Heating of Multi-Family Buildings in Comparison with Feedback and Feedforward Control. <em>Energies (Basel)</em> 2024:17(1):261. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en17010261" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en17010261</a>">https://doi.org/10.3390/en17010261</ext-link>.
  50. Ding Y., <em>et al.</em> Passive climate regulation with transpiring wood for buildings with increased energy efficiency. <em>Materials Horizons</em> 2023:10(1):257–267. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1039/d2mh01016j" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1039/d2mh01016j</a>">https://doi.org/10.1039/d2mh01016j</ext-link>
  51. Bumanis G., Bajare D. Case Study of EPS Aggregate Insulation Material Used in Construction Sites. <em>Environmental and Climate Technologies</em> 2024:28(1):21–31. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2024-0003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2024-0003</a>">https://doi.org/10.2478/rtuect-2024-0003</ext-link>
  52. Selivanovs J., Blumberga D., Ziemele J., Blumberga A., Barisa A. Research of woody biomass drying process in pellet production. <em>Environmental and Climate Technologies</em> 2012:10(1):46–50. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/v10145-012-0017-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/v10145-012-0017-7</a>">https://doi.org/10.2478/v10145-012-0017-7</ext-link>
  53. Polikarpova I., Lauka D., Blumberga D., Vigants E. Multi-Criteria Analysis to Select Renewable Energy Solution for District Heating System. <em>Environmental and Climate Technologies</em> 2019:23(3):101–109. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2019-0082" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2019-0082</a>">https://doi.org/10.2478/rtuect-2019-0082</ext-link>
  54. Stennikov V., Mednikova E., Postnikov I., Penkovskii A. Optimization of the Effective Heat Supply Radius for the District Heating Systems. <em>Environmental and Climate Technologies</em> 2019:23(2):207–221. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2019-0064" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2019-0064</a>">https://doi.org/10.2478/rtuect-2019-0064</ext-link>
  55. Interreg. District Heating in North-West Europe: A Guide for Energy Consumers, 2020.
  56. Liu C., <em>et al.</em> Effects of local heating of body on human thermal sensation and thermal comfort. <em>Journal of Building Engineering</em> 2022:53:104543. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jobe.2022.104543" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jobe.2022.104543</a>">https://doi.org/10.1016/j.jobe.2022.104543</ext-link>
  57. Hooshmand S. M., Zhang H., Javidanfar H., Zhai Y., Wagner A. A review of local radiant heating systems and their effects on thermal comfort and sensation. <em>Energy Build</em> 2023:296:113331. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.enbuild.2023.113331" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.enbuild.2023.113331</a>">https://doi.org/10.1016/j.enbuild.2023.113331</ext-link>
  58. Balode L., <em>et al.</em> Carbon Neutrality in Municipalities: Balancing Individual and District Heating Renewable Energy Solutions. <em>Sustainability (Switzerland)</em> 2023:15(10):8415. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/su15108415" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/su15108415</a>">https://doi.org/10.3390/su15108415</ext-link>
  59. Kramens J., Svedovs O., Sturmane A., Vigants E., Kirsanovs V., Blumberga D. Exploring Energy Security and Independence for Small Energy Users: A Latvian Case Study on Unleashing Stirling Engine Potential. <em>Sustainability (Switzerland)</em> 2024:16(3):1224. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/su16031224" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/su16031224</a>">https://doi.org/10.3390/su16031224</ext-link>
  60. Turns Stephen R. An Introduction to Combustion: Concepts and Applications. Second edition. 2000. [Online]. [Accepted: 17.06.2024]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://fenix.ciencias.ulisboa.pt/downloadFile/1126037345803917/An%20Introduction%20To%20Combustion.hm(booksformech.blogspot.com).pdf">https://fenix.ciencias.ulisboa.pt/downloadFile/1126037345803917/An%20Introduction%20To%20Combustion.hm(booksformech.blogspot.com).pdf</ext-link>
  61. Saidur R., Abdelaziz E. A., Demirbas A., Hossain M. S., Mekhilef S. A review on biomass as a fuel for boilers. <em>Renewable and Sustainable Energy Reviews</em> 2011:15(5):2262–2289. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.rser.2011.02.015" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.rser.2011.02.015</a>">https://doi.org/10.1016/j.rser.2011.02.015</ext-link>
  62. Sjaak V. L., Jaap K. The Handbook of Biomass Combustion and Co-firing, First edition. 2008. [Online]. [Accessed: 17.06.2024]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://renewable-carbon.eu/news/book-presentation-the-handbook-of-biomasscombustion-and-co-firing/">https://renewable-carbon.eu/news/book-presentation-the-handbook-of-biomasscombustion-and-co-firing/</ext-link>
  63. Erol M., Haykiri-Acma H., Küçükbayrak S. Calorific value estimation of biomass from their proximate analyses data. <em>Renewable Energy</em> 2010:35(1):170–173. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.renene.2009.05.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.renene.2009.05.008</a>">https://doi.org/10.1016/j.renene.2009.05.008</ext-link>
  64. Ariņa D., Bendere R., Denafas G., Kalnačs J., Kriipsalu M. Characterization of Refuse Derived Fuel Production from Municipal Solid Waste: The Case Studies in Latvia and Lithuania. <em>Environmental and Climate Technologies</em> 2021:24(3):112–118. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2020-0090" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2020-0090</a>">https://doi.org/10.2478/rtuect-2020-0090</ext-link>
  65. Zaman B., Samadikun B. P., Hardyanti N., Purwono P. Waste to Energy: Calorific Improvement of Municipal Solid Waste through Biodrying. <em>Environmental and Climate Technologies</em> 2021:25(1):176–187. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2021-0012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2021-0012</a>">https://doi.org/10.2478/rtuect-2021-0012</ext-link>
  66. Vassilev S. V., Vassileva C. G., Song Y.-C., Li W.-Y., Feng J. Ash contents and ash-forming elements of biomass and their significance for solid biofuel combustion. <em>Fuel</em> 2017:208:377–409. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.fuel.2017.07.036" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.fuel.2017.07.036</a>">https://doi.org/10.1016/j.fuel.2017.07.036</ext-link>
  67. Arina D., Orupe A. Characteristics of mechanically sorted municipal wastes and their suitability for production of refuse derived fuel. <em>Environmental and Climate Technologies</em> 2012:8(1):18–23. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/v10145-012-0003-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/v10145-012-0003-0</a>">https://doi.org/10.2478/v10145-012-0003-0</ext-link>
  68. Sarkar D. K. Chapter 3 – Fuels and Combustion, in <em>Thermal Power Plant.</em> Elsevier 2015:91–137. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/B978-0-12-801575-9.00003-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-12-801575-9.00003-2</a>">https://doi.org/10.1016/B978-0-12-801575-9.00003-2</ext-link>
  69. Kirsanovs V., Timma L., Zandeckis A., Romagnoli F. The quality of pellets available on the market in Latvia: Classification according EN 14961 requirements. <em>Environmental and Climate Technologies</em> 2012:8(1):36–40. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/v10145-012-0006-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/v10145-012-0006-x</a>">https://doi.org/10.2478/v10145-012-0006-x</ext-link>
  70. Samuelsson R., Burvall J., Jirjis R. Comparison of different methods for the determination of moisture content in biomass. <em>Biomass Bioenergy</em> 2006:30(11):929–934. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.biombioe.2006.06.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.biombioe.2006.06.004</a>">https://doi.org/10.1016/j.biombioe.2006.06.004</ext-link>
  71. Demirbaş A. Effect of initial moisture content on the yields of oily products from pyrolysis of biomass. <em>Journal of Analytical and Applied Pyrolysis</em> 2004:71:803–815. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jaap.2003.10.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jaap.2003.10.008</a>">https://doi.org/10.1016/j.jaap.2003.10.008</ext-link>
  72. Chapter 9 – Thermal reactions, in <em>Air Pollution Calculations</em>. Vallero D. A., (Ed.), Elsevier, 2019:207–218. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/B978-0-12-814934-8.00009-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-12-814934-8.00009-0</a>">https://doi.org/10.1016/B978-0-12-814934-8.00009-0</ext-link>
  73. Fedorov R. V., Generalov D. A., Sherkunov V. V., Sapunov V. V., Busygin S. V. Improving the Efficiency of Fuel Combustion with the Use of Various Designs of Embrasures. <em>Energies (Basel)</em> 2023:16(11):4452. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en16114452" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en16114452</a>">https://doi.org/10.3390/en16114452</ext-link>
  74. Poisa L., Hlebnikov A., Adamovics R. Hemp (<em>Cannabis sativa</em> L.) as an Environmentally Friendly Energyplant. <em>Environmental and Climate Technologies</em> 2010:5(1):80–85. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/v10145-010-0038-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/v10145-010-0038-z</a>">https://doi.org/10.2478/v10145-010-0038-z</ext-link>
  75. Popescu F., Mahu R., Ion I. V., Rusu E. A Mathematical Model of Biomass Combustion Physical and Chemical Processes. <em>Energies (Basel)</em> 2020:13(23):6232. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en13236232" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en13236232</a>">https://doi.org/10.3390/en13236232</ext-link>
  76. Pełka G., <em>et al.</em> Comparison of Emissions and Efficiency of Two Types of Burners When Burning Wood Pellets from Different Suppliers. <em>Energies (Basel)</em> 2023:16(4):1695. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en16041695" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en16041695</a>">https://doi.org/10.3390/en16041695</ext-link>
  77. Mätzing H., Gehrmann H.-J., Seifert H., Stapf D. Modelling grate combustion of biomass and low rank fuels with CFD application. <em>Waste Management</em> 2018:78:686–697. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.wasman.2018.05.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.wasman.2018.05.008</a>">https://doi.org/10.1016/j.wasman.2018.05.008</ext-link>
  78. Aminnia N., <em>et al.</em> Three-dimensional CFD-DEM simulation of raceway transport phenomena in a blast furnace. <em>Fuel</em> 2023:334:126574. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.fuel.2022.126574" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.fuel.2022.126574</a>">https://doi.org/10.1016/j.fuel.2022.126574</ext-link>
  79. Wardach-Świȩcicka I., Kardaś D. Prediction of Pyrolysis Gas Composition Based on the Gibbs Equation and TGA Analysis. <em>Energies (Basel)</em> 2023:16(3):1147. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en16031147" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en16031147</a>">https://doi.org/10.3390/en16031147</ext-link>
  80. Bieniek A., Jerzak W., Magdziarz A. Numerical investigation of biomass fast pyrolysis in a free fall reactor. <em>Archives of Thermodynamics</em> 2021:42(3):173–196.
  81. Wardach-Święcicka I., Polesek-Karczewska S., Kardaś D. Biomass Combustion in the Helically Coiled Domestic Boiler Combined with the Equilibrium/Chemical Kinetics CFD Approach. <em>Applied Mechanics</em> 2023:4(2):779–802. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/applmech4020040" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/applmech4020040</a>">https://doi.org/10.3390/applmech4020040</ext-link>
  82. Wardach-Święcicka I., Kardaś D. Modeling of heat and mass transfer during thermal decomposition of a single solid fuel particle. <em>Archives of Thermodynamics</em> 2013:34:53–71. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/aoter-2013-0010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/aoter-2013-0010</a>">https://doi.org/10.2478/aoter-2013-0010</ext-link>
  83. Wardach-Święcicka I., Kardaś D. Modelling thermal behaviour of a single solid particle pyrolysing in a hot gas flow. <em>Energy</em> 2021:221:119802. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2021.119802" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2021.119802</a>">https://doi.org/10.1016/j.energy.2021.119802</ext-link>
  84. Balode L., Dolge K., Blumberga D. The contradictions between district and individual heating towards Green Deal targets. <em>Sustainability (Switzerland)</em> 2021:13(6):3370. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/su13063370" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/su13063370</a>">https://doi.org/10.3390/su13063370</ext-link>
  85. Henrich B. A., Hoppe T., Diran D., Lukszo Z. The use of energy models in local heating transition decision making: Insights from ten municipalities in the Netherlands. <em>Energies (Basel)</em> 2021:14(2):423. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en14020423" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en14020423</a>">https://doi.org/10.3390/en14020423</ext-link>
  86. Stec S., Szymańska E. J., Stec-Rusiecka J., Puacz-Olszewska J. Transformation of the Polish Heating Sector Based on an Example of Select Heat Energy Companies Supplying Energy to Local Government Units. <em>Energies (Basel)</em> 2023:16(22):7550. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en16227550" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en16227550</a>">https://doi.org/10.3390/en16227550</ext-link>
  87. Wang H., Di Pietro G., Wu X., Lahdelma R., Verda V., Haavisto I. Renewable and sustainable energy transitions for countries with different climates and renewable energy sources potentials. <em>Energies (Basel)</em> 2018:11(12):1–32. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en11123523" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en11123523</a>">https://doi.org/10.3390/en11123523</ext-link>
  88. Gulyurtlu I., Pinto F., Abelha P., Lopes H., Crujeira A. T. 9 – Pollutant emissions and their control in fluidised bed combustion and gasification. In <em>Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification</em> Scala F., (Ed.), in Woodhead Publishing Series in Energy. Woodhead Publishing. 2013:435–480. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1533/9780857098801.2.435" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1533/9780857098801.2.435</a>">https://doi.org/10.1533/9780857098801.2.435</ext-link>
  89. Di Natale F., Carotenuto C., Parisi A., Flagiello D., Lancia A. Wet electrostatic scrubbing for flue gas treatment. <em>Fuel</em> 2022:325:124888. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.fuel.2022.124888" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.fuel.2022.124888</a>">https://doi.org/10.1016/j.fuel.2022.124888</ext-link>
  90. Järvinen A., <em>et al.</em> Performance of a Wet Electrostatic Precipitator in Marine Applications. <em>J Mar Sci Eng</em> 2023:11(2):393. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/jmse11020393" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/jmse11020393</a>">https://doi.org/10.3390/jmse11020393</ext-link>
  91. Blumberga D., Priedniece V., Kalniņš E., Kirsanovs V. Small scale pellet boiler gas treatment in fog unit. <em>International Journal of Energy and Environmental Engineering</em> 2021:12:191–202. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s40095-020-00357-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s40095-020-00357-x</a>">https://doi.org/10.1007/s40095-020-00357-x</ext-link>
  92. Ciupek B., Urbaniak R., Kinalska D., Nadolny Z. Flue Gas Recirculation System for Biomass Heating Boilers – Research and Technical Applications for Reductions in Nitrogen Oxides (NO<sub>x</sub>) Emissions. <em>Energies (Basel)</em> 2024:17(1):259. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/en17010259" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/en17010259</a>">https://doi.org/10.3390/en17010259</ext-link>
  93. Švedovs O., Dzikēvičs M., Kirsanovs V. Methods for Determining the Performance and Efficiency Parameters of the Flue-gas Condenser Sedimentation Tank. <em>Environmental and Climate Technologies</em> 2020:24(2):337–347. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2020-0077" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2020-0077</a>">https://doi.org/10.2478/rtuect-2020-0077</ext-link>
  94. Svedovs O., Dzikevics M., Kirsanovs V., Veidenbergs I. Development of New Compact Water Treatment System for Flue-Gas Condenser for Households. <em>Environmental and Climate Technologies</em> 2021:25(1):563–573. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2021-0041" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2021-0041</a>">https://doi.org/10.2478/rtuect-2021-0041</ext-link>
  95. Svedovs O., Dzikevics M., Kirsanovs V., Veidenbergs I. A New Approach to Water Treatment: Investigating the Performance of Compact Particulate Matter Collector for Use in Compact Flue Gas Condenser. <em>Environmental and Climate Technologies</em> 2023:27(1):212–219. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2023-0016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2023-0016</a>">https://doi.org/10.2478/rtuect-2023-0016</ext-link>
  96. Sittig D. F. Category Definitions. In <em>Clinical Informatics Literacy</em>, Sittig D. F., (Ed.), Academic Press, 2017:1–170. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/B978-0-12-803206-0.00001-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-12-803206-0.00001-8</a>">https://doi.org/10.1016/B978-0-12-803206-0.00001-8</ext-link>
  97. Donthu N., Kumar S., Mukherjee D., Pandey N., Lim W. M. How to conduct a bibliometric analysis: An overview and guidelines. <em>J Business Research</em> 2021:133:285–296. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jbusres.2021.04.070" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jbusres.2021.04.070</a>">https://doi.org/10.1016/j.jbusres.2021.04.070</ext-link>
  98. Svedovs O., Dzikevics M., Kirsanovs V. Bibliometric Analysis of the Alternative Biomass Types and Biomass Combustion Technologies. <em>Environmental and Climate Technologies</em> 2023:27(1):559–569. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2023-0041" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2023-0041</a>">https://doi.org/10.2478/rtuect-2023-0041</ext-link>
  99. Cucari N., Tutore I., Montera R., Profita S. A bibliometric performance analysis of publication productivity in the corporate social responsibility field: Outcomes of SciVal analytics. <em>Corporate Social Responsibility and Environmental Management</em> 2023:30(1):1–15. John Wiley and Sons Ltd, 2023. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/csr.2346" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/csr.2346</a>">https://doi.org/10.1002/csr.2346</ext-link>
  100. Bota-Avram C. Bibliometrics Performance Analysis. In <em>Science Mapping of Digital Transformation in Business: A Bibliometric Analysis and Research Outlook</em>. Springer, 2023:15–22. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/978-3-031-26765-9_3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-3-031-26765-9_3</a>">https://doi.org/10.1007/978-3-031-26765-9_3</ext-link>
  101. Aria M., Cuccurullo C. bibliometrix: An R-tool for comprehensive science mapping analysis. <em>J Informetrics</em> 2017:11(4):959–975. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.joi.2017.08.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.joi.2017.08.007</a>">https://doi.org/10.1016/j.joi.2017.08.007</ext-link>
  102. Wang L., Zhang G., Wang Z., Liu J., Shang J., Liang L. Bibliometric analysis of remote sensing research trend in crop growth monitoring: A case study in China. <em>Remote Sensing (Basel)</em> 2019:11(7):809. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/rs11070809" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/rs11070809</a>">https://doi.org/10.3390/rs11070809</ext-link>
  103. Liu J. S., Lu L. Y. Y., Lu W. M. Research fronts in data envelopment analysis. <em>Omega</em> 2016:58:33–45. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.omega.2015.04.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.omega.2015.04.004</a>">https://doi.org/10.1016/j.omega.2015.04.004</ext-link>
  104. Kişi N. Bibliometric Analysis and Visualization of Global Research on Employee Engagement. <em>Sustainability (Switzerland)</em> 2023:15(13). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/su151310196" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/su151310196</a>">https://doi.org/10.3390/su151310196</ext-link>
  105. Toom K. Chapter 10 – Indicators. In <em>Research Management</em> Andersen J., Toom K., Poli S., Miller P. F., (Eds.), Boston: Academic Press, 2018:213–230. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/B978-0-12-805059-0.00010-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-12-805059-0.00010-9</a>">https://doi.org/10.1016/B978-0-12-805059-0.00010-9</ext-link>
  106. Pranckutė R. Web of Science (WoS) and Scopus: the titans of bibliographic information in today’s academic world. <em>Publications</em> 2021:9(1). Multidisciplinary Digital Publishing Institute (MDPI). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/publications9010012" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/publications9010012</a>">https://doi.org/10.3390/publications9010012</ext-link>
  107. Ullah R., Asghar I., Griffiths M. G. An Integrated Methodology for Bibliometric Analysis: A Case Study of Internet of Things in Healthcare Applications. <em>Sensors</em> 2023:23(1). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/s23010067" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/s23010067</a>">https://doi.org/10.3390/s23010067</ext-link>
  108. Cobo M. J., López-Herrera A. G., Herrera-Viedma E., Herrera F. Science mapping software tools: Review, analysis, and cooperative study among tools. <em>Journal of the American Society for Information Science and Technology</em> 2011:62(7):1382–1402. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/asi.21525" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/asi.21525</a>">https://doi.org/10.1002/asi.21525</ext-link>
  109. Kirby A. Exploratory Bibliometrics: Using VOSviewer as a Preliminary Research Tool. <em>Publications</em> 2023:11(1):10. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/publications11010010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/publications11010010</a>">https://doi.org/10.3390/publications11010010</ext-link>
  110. Kardaś D., Polesek-Karczewska S., Tiutiurski P., Wardach-Świȩcicka I. Applying dynamic mesh to examine evolution of effective thermal conductivity in porous medium undergoing macrostructure change. <em>Applied Thermal Engineering</em> 2021:187:116583. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.applthermaleng.2021.116583" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.applthermaleng.2021.116583</a>">https://doi.org/10.1016/j.applthermaleng.2021.116583</ext-link>
  111. Kardaś D., Hercel P., Wardach-Świȩcicka I., Polesek-Karczewska S. On the kinetic rate of biomass particle decomposition – Experimental and numerical analysis. <em>Energy</em> 2021:219:119575. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2020.119575" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2020.119575</a>">https://doi.org/10.1016/j.energy.2020.119575</ext-link>
  112. Awny A., <em>et al.</em> Finite element modeling of the breakage behavior of agricultural biomass pellets under different heights during handling and storage. <em>Saudi J Biological Sciences</em> 2022:29(3):1407–1415. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.sjbs.2021.11.034" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.sjbs.2021.11.034</a>">https://doi.org/10.1016/j.sjbs.2021.11.034</ext-link>
  113. Peters B., Džiugys A., Navakas R. Simulation of thermal conversion of solid fuel by the discrete particle method. <em>Lith. J. Phys.</em> 2011:51:91–105. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3952/lithjphys.51204" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3952/lithjphys.51204</a>">https://doi.org/10.3952/lithjphys.51204</ext-link>
  114. Zarzycki R., Kobyłecki R., Bis Z. Numerical analysis of the combustion of gases generated during biomass carbonization. <em>Entropy</em> 2020:22(2):181. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/e22020181" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/e22020181</a>">https://doi.org/10.3390/e22020181</ext-link>
  115. Ismail T. M., El-Salam M. A. Parametric studies on biomass gasification process on updraft gasifier high temperature air gasification. <em>Appl Therm Eng</em> 2017:112:1460–1473. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.applthermaleng.2016.10.026" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.applthermaleng.2016.10.026</a>">https://doi.org/10.1016/j.applthermaleng.2016.10.026</ext-link>
  116. Kardaś D., Kluska J., Kazimierski P. The course and effects of syngas production from beechwood and RDF in updraft reactor in the light of experimental tests and numerical calculations. <em>Thermal Science and Engineering Progress</em> 2018:8:136–144. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.tsep.2018.08.020" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.tsep.2018.08.020</a>">https://doi.org/10.1016/j.tsep.2018.08.020</ext-link>
  117. Džiugys A., Peters B., Hunsinger H., Krebs L. Experimental and numerical evaluation of the transport behaviour of a moving fuel bed on a forward acting grate. <em>Granular Matter</em> 2007:9:387–399. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s10035-007-0064-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10035-007-0064-0</a>">https://doi.org/10.1007/s10035-007-0064-0</ext-link>
  118. Ansys Fluent: Fluid Simulation Software. [Online]. [Accessed: 01.04.2024]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.ansys.com/products/fluids/ansys-fluent">https://www.ansys.com/products/fluids/ansys-fluent</ext-link>
  119. Peters B., <em>et al.</em> XDEM multi-physics and multi-scale simulation technology: Review of DEM–CFD coupling, methodology and engineering applications. <em>Particuology</em> 2019:44:176–193. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.partic.2018.04.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.partic.2018.04.005</a>">https://doi.org/10.1016/j.partic.2018.04.005</ext-link>
  120. LuXDEM: Luxembourg XDEM Research Centre, ‘Extended Discrete Element Method (XDEM)’, 2024. [Online]. [Accessed: 01.04.2024]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://luxdem.uni.lu/">https://luxdem.uni.lu/</ext-link>
DOI: https://doi.org/10.2478/rtuect-2024-0023 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 286 - 302
Submitted on: Apr 2, 2024
Accepted on: Jun 18, 2024
Published on: Aug 31, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2024 Oskars Svedovs, Mikelis Dzikevics, Vladimirs Kirsanovs, Izabela Wardach-Święcicka, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.