References
- 40 – Heat energy, in Newnes Engineering and Physical Science Pocket Book. Bird J. O., Chivers P. J. (Eds.), Newnes, 1993:307–313. https://doi.org/10.1016/B978-0-7506-1683-6.50043-6
- Belyakov N. Chapter One – Concept of energy, in Sustainable Power Generation, Academic Press, 2019:3–22. https://doi.org/10.1016/B978-0-12-817012-0.00010-4
- Akram M. W., Hasanuzzaman M. Chapter 1 – Fundamentals of thermal energy and solar system integration. In Technologies for Solar Thermal Energy, M. Hasanuzzaman, (Ed.), Academic Press 2022:1–24. https://doi.org/10.1016/B978-0-12-823959-9.00003-9
- Islas J., Manzini F., Masera O., Vargas V. Chapter Four – Solid Biomass to Heat and Power, in The Role of Bioenergy in the Bioeconomy. Lago C., Caldés N., Lechón Y. (Eds.), Academic Press 2019:145–177. https://doi.org/10.1016/B978-0-12-813056-8.00004-2
- Fitts C. R. Chapter 12 – Subsurface heat flow and geothermal energy, in Groundwater Science (Third Edition). Fitts C. R., (Ed.), Academic Press 2024:581–612. https://doi.org/10.1016/B978-0-12-811455-1.00018-6
- Pudasainee D., Kurian V., Gupta R. 2 – Coal: Past, Present, and Future Sustainable Use. In Future Energy (Third Edition), Letcher T. M., (Ed.), Elsevier, 2020:21–48. https://doi.org/10.1016/B978-0-08-102886-5.00002-5
- Yin C. 4 – Coal and biomass cofiring: CFD modelling. In New Trends in Coal Conversion. Suárez-Ruiz I., Diez M. A., Rubiera F. (Eds.), Woodhead Publishing 2019:89–116. https://doi.org/10.1016/B978-0-08-102201-6.00004-2
- Caillat S., Vakkilainen E. 9 – Large-scale biomass combustion plants: an overview. In Biomass Combustion Science, Technology and Engineering. Rosendahl L., (Ed.), In Woodhead Publishing Series in Energy. Woodhead Publishing, 2013:189–224. https://doi.org/10.1533/9780857097439.3.189
- Zhou L. Chapter 3 – Fundamentals of Combustion Theory. In Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows. Zhou L., (Ed.), Butterworth-Heinemann, 2018:15–70. https://doi.org/10.1016/B978-0-12-813465-8.00003-X
- Chong C. T., Ng J.-H. Chapter 4 – Combustion performance of biojet fuels. In Biojet Fuel in Aviation Applications, Chong C. T., Ng J.-H., (Eds.), Elsevier, 2021:175–230. https://doi.org/10.1016/B978-0-12-822854-8.00002-0
- Okawa T., et al. 3 – Fundamentals for power engineering. In Fundamentals of Thermal and Nuclear Power Generation, vol. 1, Koizumi Y., Okawa T., Mori S. (Eds.), in JSME Series in Thermal and Nuclear Power Generation. Elsevier, 2021:77–226. https://doi.org/10.1016/B978-0-12-820733-8.00003-0
- Jenkins R. G. Chapter 16 – Thermal Gasification of Biomass – A Primer. In Bioenergy, Dahiya A., (Ed.), Boston: Academic Press, 2015:261–286. https://doi.org/10.1016/B978-0-12-407909-0.00016-X
- Morales-Máximo M., et al. Multifactorial Assessment of the Bioenergetic Potential of Residual Biomass of Pinus spp. in a Rural Community: From Functional Characterization to Mapping of the Available Energy Resource. Fire 2023:6(8):317. https://doi.org/10.3390/fire6080317
- Dincer I., Rosen M. A. Chapter 3 – Industrial Heating and Cooling Systems, in Exergy Analysis of Heating, Refrigerating and Air Conditioning. Dincer I., Rosen M. A. (Eds.), Boston: Elsevier, 2015:99–129. https://doi.org/10.1016/B978-0-12-417203-6.00003-X
- Sehili Y., Loubar K., Tarabet L., Cerdoun M., Lacroix C. Computational Investigation of the Influence of Combustion Chamber Characteristics on a Heavy-Duty Ammonia Diesel Dual Fuel Engine. Energies (Basel) 2024:17(5):1231. https://doi.org/10.3390/en17051231
- Tolley A. 10 – Heavy-duty vehicles and powertrains: technologies and systems that enable “zero” air quality and greenhouse gas emissions with enhanced levels of efficiency, in Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance (Second Edition), Folkson R., Sapsford S. (Eds.), in Woodhead Publishing Series in Energy. Woodhead Publishing 2022:263–289. https://doi.org/10.1016/B978-0-323-90979-2.00014-7
- Keiner D., et al. Global‐local heat demand development for the energy transition time frame up to 2050. Energies (Basel) 2021:14(13):3814. https://doi.org/10.3390/en14133814
- Santamouris M., Vasilakopoulou K. Present and future energy consumption of buildings: Challenges and opportunities towards decarbonisation. e-Prime – Advances in Electrical Engineering, Electronics and Energy 2021:1:100002. https://doi.org/10.1016/j.prime.2021.100002
- Hasanuzzaman M., Islam M. A., Rahim N. A., Yanping Y. Chapter 3 – Energy demand. In Energy for Sustainable Development. Hasanuzzaman M. D., Rahim N. A. (Eds.), Academic Press 2020:41–87. https://doi.org/10.1016/B978-0-12-814645-3.00003-1
- Mcmillan C., Boardman R., Mckellar M., Sabharwall P., Ruth M., Bragg-Sitton S. Generation and Use of Thermal Energy in the U.S. Industrial Sector and Opportunities to Reduce its Carbon Emissions. 2016. [Online]. [Accessed: 28.03.2024]. Available: http://www.inl.gov
- Ong B. H. Y., Bhadbhade N., Olsen D. G., Wellig B. Characterizing sector-wide thermal energy profiles for industrial sectors. Energy 2023:282:129028. https://doi.org/10.1016/j.energy.2023.129028
- Zhang S., et al. Study on global industrialization and industry emission to achieve the 2 °C goal based on message model and LMDI approach. Energies (Basel) 2020:13(4). https://doi.org/10.3390/en13040825
- Chanthakett A., Arif M. T., Khan M. M. K., Subhani M. Chapter 4 – Hydrogen production from municipal solid waste using gasification method. In Hydrogen Energy Conversion and Management. Khan M. M. K., Azad A. K., Oo A. M. T. (Eds.), Elsevier, 2024:103–131. https://doi.org/10.1016/B978-0-443-15329-7.00012-0
- Kud K., Woźniak M., Badora A. Impact of the energy sector on the quality of the environment in the opinion of energy consumers from southeastern Poland. Energies (Basel) 2021:14(17). https://doi.org/10.3390/en14175551
- Syrtsova E., Pyzhev A., Zander E. Social, Economic, and Environmental Effects of Electricity and Heat Generation in Yenisei Siberia: Is there an Alternative to Coal? Energies (Basel) 2023:16(1). https://doi.org/10.3390/en16010212
- Klavins M., Bisters V., Burlakovs J. Small scale gasification application and perspectives in circular economy. Environmental and Climate Technologies 2020:22(1):42–54. https://doi.org/10.2478/rtuect-2018-0003
- Wang Z., Luther M. B., Amirkhani M., Liu C., Horan P. State of the art on heat pumps for residential buildings. Buildings 2021:11(8):350. https://doi.org/10.3390/buildings11080350
- Kwon Y., Bae S., Nam Y. Development of Design Method for River Water Source Heat Pump System Using an Optimization Algorithm. Energies (Basel) 2022:15(11):4019. https://doi.org/10.3390/en15114019
- Soltani M., et al. Environmental, economic, and social impacts of geothermal energy systems. Renewable and Sustainable Energy Reviews 2021:140:110750. https://doi.org/10.1016/j.rser.2021.110750
- Chomać-Pierzecka E., Sobczak A., Soboń D. The Potential and Development of the Geothermal Energy Market in Poland and the Baltic States—Selected Aspects. Energies (Basel) 2022:15(11):4142. https://doi.org/10.3390/en15114142
- Pakere I., Blumberga D. Solar Energy in Low Temperature District Heating. Environmental and Climate Technologies 2019:23(3):147–158. https://doi.org/10.2478/rtuect-2019-0085
- Sukumaran S., Laht J., Volkova A. Overview of Solar Photovoltaic Applications for District Heating and Cooling. Environmental and Climate Technologies 2023:27(1):964–979. https://doi.org/10.2478/rtuect-2023-0070.
- Bohvalovs G., Vanaga R., Brakovska V., Freimanis R., Blumberga A. Energy Community Measures Evaluation via Differential Evolution Optimization. Environmental and Climate Technologies 2022:26(1):606–615. https://doi.org/10.2478/rtuect-2022-0046
- Narbuts J., Vanaga R. Revolutionizing the Building Envelope: A Comprehensive Scientific Review of Innovative Technologies for Reduced Emissions. Environmental and Climate Technologies 2023:27(1):724–737. https://doi.org/10.2478/rtuect-2023-0053
- Albatayneh A., Alterman D., Page A., Moghtaderi B. The significance of temperature based approach over the energy based approaches in the buildings thermal assessment. Environmental and Climate Technologies 2017:19(1):39–50. https://doi.org/10.1515/rtuect-2017-0004
- Nagpal H., Spriet J., Murali M. K., McNabola A. Heat recovery from wastewater – A review of available resource. Water (Switzerland) 2021:13(9):1274. https://doi.org/10.3390/w13091274
- Wehbi Z., Taher R., Faraj J., Lemenand T., Mortazavi M., Khaled M. Waste Water Heat Recovery Systems types and applications: Comprehensive review, critical analysis, and potential recommendations. Energy Reports 2023:9:16–33. https://doi.org/10.1016/j.egyr.2023.05.243
- Yuan X., Liang Y., Hu X., Xu Y., Chen Y., Kosonen R. Waste heat recoveries in data centers: A review. Renewable and Sustainable Energy Reviews 2023:188:113777. https://doi.org/10.1016/j.rser.2023.113777
- Narloch P., Rosicki Ł. Using waste heat from data centers in different climate zones. Builder 2020:272(3):56–59. https://doi.org/10.5604/01.3001.0013.8482
- Abugabbara M. Modelling and Simulation of the Fifth-Generation District Heating and Cooling. Thesis for: Licentiate degree. Technical University of Denmark. 2021. https://doi.org/10.13140/RG.2.2.18483.96809
- Lazarou S., Christodoulou C., Vita V. Global Change Assessment Model (GCAM) considerations of the primary sources energy mix for an energetic scenario that could meet Paris agreement. In 2019 54th International Universities Power Engineering Conference, UPEC 2019 – Proceedings. Institute of Electrical and Electronics Engineers Inc., Sep. 2019. https://doi.org/10.1109/UPEC.2019.8893507
- Ekpeni L. E. N., Benyounis K. Y., Nkem-Ekpeni F., Stokes J., Olabi A. G. Energy Diversity through Renewable Energy Source (RES) – A Case Study of Biomass. Energy Procedia 2014:61:1740–1747. https://doi.org/10.1016/j.egypro.2014.12.202
- Andreev O., Lomakina O., Aleksandrova A. Diversification of structural and crisis risks in the energy sector of the ASEAN member countries. Energy Strategy Reviews 2021:35:100655. https://doi.org/10.1016/j.esr.2021.100655
- Ślusarz G., Gołębiewska B., Cierpiał-Wolan M., Gołębiewski J., Twaróg D., Wójcik S. Regional diversification of potential, production and efficiency of use of biogas and biomass in Poland. Energies (Basel) 2021:14(3):742. https://doi.org/10.3390/en14030742
- Li J., Yang L., Long H. Climatic impacts on energy consumption: Intensive and extensive margins. Energy Economics 2018:71:332–343. https://doi.org/10.1016/j.eneco.2018.03.010
- Botzen W. J. W., Nees T., Estrada F. Temperature effects on electricity and gas consumption: Empirical evidence from mexico and projections under future climate conditions. Sustainability (Switzerland) 2021:13(1):1–28. https://doi.org/10.3390/su13010305
- Hepf C., Gottkehaskamp B., Miller C., Auer T. International Comparison of Weather and Emission Predictive Building Control. Buildings 2024:14(1):288. https://doi.org/10.3390/buildings14010288
- Geikins A., Borodinecs A., Daksa G., Bogdanovics R., Zajecs D. Typology of Unclassified Buildings and Specifics of Input Parameters for Energy Audits in Latvia. In IOP Conference Series: Earth and Environmental Science Institute of Physics Publishing, June 2019. https://doi.org/10.1088/1755-1315/290/1/012131.
- Olsson D., Filipsson P., Trüschel A. Weather Forecast Control for Heating of Multi-Family Buildings in Comparison with Feedback and Feedforward Control. Energies (Basel) 2024:17(1):261. https://doi.org/10.3390/en17010261.
- Ding Y., et al. Passive climate regulation with transpiring wood for buildings with increased energy efficiency. Materials Horizons 2023:10(1):257–267. https://doi.org/10.1039/d2mh01016j
- Bumanis G., Bajare D. Case Study of EPS Aggregate Insulation Material Used in Construction Sites. Environmental and Climate Technologies 2024:28(1):21–31. https://doi.org/10.2478/rtuect-2024-0003
- Selivanovs J., Blumberga D., Ziemele J., Blumberga A., Barisa A. Research of woody biomass drying process in pellet production. Environmental and Climate Technologies 2012:10(1):46–50. https://doi.org/10.2478/v10145-012-0017-7
- Polikarpova I., Lauka D., Blumberga D., Vigants E. Multi-Criteria Analysis to Select Renewable Energy Solution for District Heating System. Environmental and Climate Technologies 2019:23(3):101–109. https://doi.org/10.2478/rtuect-2019-0082
- Stennikov V., Mednikova E., Postnikov I., Penkovskii A. Optimization of the Effective Heat Supply Radius for the District Heating Systems. Environmental and Climate Technologies 2019:23(2):207–221. https://doi.org/10.2478/rtuect-2019-0064
- Interreg. District Heating in North-West Europe: A Guide for Energy Consumers, 2020.
- Liu C., et al. Effects of local heating of body on human thermal sensation and thermal comfort. Journal of Building Engineering 2022:53:104543. https://doi.org/10.1016/j.jobe.2022.104543
- Hooshmand S. M., Zhang H., Javidanfar H., Zhai Y., Wagner A. A review of local radiant heating systems and their effects on thermal comfort and sensation. Energy Build 2023:296:113331. https://doi.org/10.1016/j.enbuild.2023.113331
- Balode L., et al. Carbon Neutrality in Municipalities: Balancing Individual and District Heating Renewable Energy Solutions. Sustainability (Switzerland) 2023:15(10):8415. https://doi.org/10.3390/su15108415
- Kramens J., Svedovs O., Sturmane A., Vigants E., Kirsanovs V., Blumberga D. Exploring Energy Security and Independence for Small Energy Users: A Latvian Case Study on Unleashing Stirling Engine Potential. Sustainability (Switzerland) 2024:16(3):1224. https://doi.org/10.3390/su16031224
- Turns Stephen R. An Introduction to Combustion: Concepts and Applications. Second edition. 2000. [Online]. [Accepted: 17.06.2024]. Available: https://fenix.ciencias.ulisboa.pt/downloadFile/1126037345803917/An%20Introduction%20To%20Combustion.hm(booksformech.blogspot.com).pdf
- Saidur R., Abdelaziz E. A., Demirbas A., Hossain M. S., Mekhilef S. A review on biomass as a fuel for boilers. Renewable and Sustainable Energy Reviews 2011:15(5):2262–2289. https://doi.org/10.1016/j.rser.2011.02.015
- Sjaak V. L., Jaap K. The Handbook of Biomass Combustion and Co-firing, First edition. 2008. [Online]. [Accessed: 17.06.2024]. Available: https://renewable-carbon.eu/news/book-presentation-the-handbook-of-biomasscombustion-and-co-firing/
- Erol M., Haykiri-Acma H., Küçükbayrak S. Calorific value estimation of biomass from their proximate analyses data. Renewable Energy 2010:35(1):170–173. https://doi.org/10.1016/j.renene.2009.05.008
- Ariņa D., Bendere R., Denafas G., Kalnačs J., Kriipsalu M. Characterization of Refuse Derived Fuel Production from Municipal Solid Waste: The Case Studies in Latvia and Lithuania. Environmental and Climate Technologies 2021:24(3):112–118. https://doi.org/10.2478/rtuect-2020-0090
- Zaman B., Samadikun B. P., Hardyanti N., Purwono P. Waste to Energy: Calorific Improvement of Municipal Solid Waste through Biodrying. Environmental and Climate Technologies 2021:25(1):176–187. https://doi.org/10.2478/rtuect-2021-0012
- Vassilev S. V., Vassileva C. G., Song Y.-C., Li W.-Y., Feng J. Ash contents and ash-forming elements of biomass and their significance for solid biofuel combustion. Fuel 2017:208:377–409. https://doi.org/10.1016/j.fuel.2017.07.036
- Arina D., Orupe A. Characteristics of mechanically sorted municipal wastes and their suitability for production of refuse derived fuel. Environmental and Climate Technologies 2012:8(1):18–23. https://doi.org/10.2478/v10145-012-0003-0
- Sarkar D. K. Chapter 3 – Fuels and Combustion, in Thermal Power Plant. Elsevier 2015:91–137. https://doi.org/10.1016/B978-0-12-801575-9.00003-2
- Kirsanovs V., Timma L., Zandeckis A., Romagnoli F. The quality of pellets available on the market in Latvia: Classification according EN 14961 requirements. Environmental and Climate Technologies 2012:8(1):36–40. https://doi.org/10.2478/v10145-012-0006-x
- Samuelsson R., Burvall J., Jirjis R. Comparison of different methods for the determination of moisture content in biomass. Biomass Bioenergy 2006:30(11):929–934. https://doi.org/10.1016/j.biombioe.2006.06.004
- Demirbaş A. Effect of initial moisture content on the yields of oily products from pyrolysis of biomass. Journal of Analytical and Applied Pyrolysis 2004:71:803–815. https://doi.org/10.1016/j.jaap.2003.10.008
- Chapter 9 – Thermal reactions, in Air Pollution Calculations. Vallero D. A., (Ed.), Elsevier, 2019:207–218. https://doi.org/10.1016/B978-0-12-814934-8.00009-0
- Fedorov R. V., Generalov D. A., Sherkunov V. V., Sapunov V. V., Busygin S. V. Improving the Efficiency of Fuel Combustion with the Use of Various Designs of Embrasures. Energies (Basel) 2023:16(11):4452. https://doi.org/10.3390/en16114452
- Poisa L., Hlebnikov A., Adamovics R. Hemp (Cannabis sativa L.) as an Environmentally Friendly Energyplant. Environmental and Climate Technologies 2010:5(1):80–85. https://doi.org/10.2478/v10145-010-0038-z
- Popescu F., Mahu R., Ion I. V., Rusu E. A Mathematical Model of Biomass Combustion Physical and Chemical Processes. Energies (Basel) 2020:13(23):6232. https://doi.org/10.3390/en13236232
- Pełka G., et al. Comparison of Emissions and Efficiency of Two Types of Burners When Burning Wood Pellets from Different Suppliers. Energies (Basel) 2023:16(4):1695. https://doi.org/10.3390/en16041695
- Mätzing H., Gehrmann H.-J., Seifert H., Stapf D. Modelling grate combustion of biomass and low rank fuels with CFD application. Waste Management 2018:78:686–697. https://doi.org/10.1016/j.wasman.2018.05.008
- Aminnia N., et al. Three-dimensional CFD-DEM simulation of raceway transport phenomena in a blast furnace. Fuel 2023:334:126574. https://doi.org/10.1016/j.fuel.2022.126574
- Wardach-Świȩcicka I., Kardaś D. Prediction of Pyrolysis Gas Composition Based on the Gibbs Equation and TGA Analysis. Energies (Basel) 2023:16(3):1147. https://doi.org/10.3390/en16031147
- Bieniek A., Jerzak W., Magdziarz A. Numerical investigation of biomass fast pyrolysis in a free fall reactor. Archives of Thermodynamics 2021:42(3):173–196.
- Wardach-Święcicka I., Polesek-Karczewska S., Kardaś D. Biomass Combustion in the Helically Coiled Domestic Boiler Combined with the Equilibrium/Chemical Kinetics CFD Approach. Applied Mechanics 2023:4(2):779–802. https://doi.org/10.3390/applmech4020040
- Wardach-Święcicka I., Kardaś D. Modeling of heat and mass transfer during thermal decomposition of a single solid fuel particle. Archives of Thermodynamics 2013:34:53–71. https://doi.org/10.2478/aoter-2013-0010
- Wardach-Święcicka I., Kardaś D. Modelling thermal behaviour of a single solid particle pyrolysing in a hot gas flow. Energy 2021:221:119802. https://doi.org/10.1016/j.energy.2021.119802
- Balode L., Dolge K., Blumberga D. The contradictions between district and individual heating towards Green Deal targets. Sustainability (Switzerland) 2021:13(6):3370. https://doi.org/10.3390/su13063370
- Henrich B. A., Hoppe T., Diran D., Lukszo Z. The use of energy models in local heating transition decision making: Insights from ten municipalities in the Netherlands. Energies (Basel) 2021:14(2):423. https://doi.org/10.3390/en14020423
- Stec S., Szymańska E. J., Stec-Rusiecka J., Puacz-Olszewska J. Transformation of the Polish Heating Sector Based on an Example of Select Heat Energy Companies Supplying Energy to Local Government Units. Energies (Basel) 2023:16(22):7550. https://doi.org/10.3390/en16227550
- Wang H., Di Pietro G., Wu X., Lahdelma R., Verda V., Haavisto I. Renewable and sustainable energy transitions for countries with different climates and renewable energy sources potentials. Energies (Basel) 2018:11(12):1–32. https://doi.org/10.3390/en11123523
- Gulyurtlu I., Pinto F., Abelha P., Lopes H., Crujeira A. T. 9 – Pollutant emissions and their control in fluidised bed combustion and gasification. In Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification Scala F., (Ed.), in Woodhead Publishing Series in Energy. Woodhead Publishing. 2013:435–480. https://doi.org/10.1533/9780857098801.2.435
- Di Natale F., Carotenuto C., Parisi A., Flagiello D., Lancia A. Wet electrostatic scrubbing for flue gas treatment. Fuel 2022:325:124888. https://doi.org/10.1016/j.fuel.2022.124888
- Järvinen A., et al. Performance of a Wet Electrostatic Precipitator in Marine Applications. J Mar Sci Eng 2023:11(2):393. https://doi.org/10.3390/jmse11020393
- Blumberga D., Priedniece V., Kalniņš E., Kirsanovs V. Small scale pellet boiler gas treatment in fog unit. International Journal of Energy and Environmental Engineering 2021:12:191–202. https://doi.org/10.1007/s40095-020-00357-x
- Ciupek B., Urbaniak R., Kinalska D., Nadolny Z. Flue Gas Recirculation System for Biomass Heating Boilers – Research and Technical Applications for Reductions in Nitrogen Oxides (NOx) Emissions. Energies (Basel) 2024:17(1):259. https://doi.org/10.3390/en17010259
- Švedovs O., Dzikēvičs M., Kirsanovs V. Methods for Determining the Performance and Efficiency Parameters of the Flue-gas Condenser Sedimentation Tank. Environmental and Climate Technologies 2020:24(2):337–347. https://doi.org/10.2478/rtuect-2020-0077
- Svedovs O., Dzikevics M., Kirsanovs V., Veidenbergs I. Development of New Compact Water Treatment System for Flue-Gas Condenser for Households. Environmental and Climate Technologies 2021:25(1):563–573. https://doi.org/10.2478/rtuect-2021-0041
- Svedovs O., Dzikevics M., Kirsanovs V., Veidenbergs I. A New Approach to Water Treatment: Investigating the Performance of Compact Particulate Matter Collector for Use in Compact Flue Gas Condenser. Environmental and Climate Technologies 2023:27(1):212–219. https://doi.org/10.2478/rtuect-2023-0016
- Sittig D. F. Category Definitions. In Clinical Informatics Literacy, Sittig D. F., (Ed.), Academic Press, 2017:1–170. https://doi.org/10.1016/B978-0-12-803206-0.00001-8
- Donthu N., Kumar S., Mukherjee D., Pandey N., Lim W. M. How to conduct a bibliometric analysis: An overview and guidelines. J Business Research 2021:133:285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
- Svedovs O., Dzikevics M., Kirsanovs V. Bibliometric Analysis of the Alternative Biomass Types and Biomass Combustion Technologies. Environmental and Climate Technologies 2023:27(1):559–569. https://doi.org/10.2478/rtuect-2023-0041
- Cucari N., Tutore I., Montera R., Profita S. A bibliometric performance analysis of publication productivity in the corporate social responsibility field: Outcomes of SciVal analytics. Corporate Social Responsibility and Environmental Management 2023:30(1):1–15. John Wiley and Sons Ltd, 2023. https://doi.org/10.1002/csr.2346
- Bota-Avram C. Bibliometrics Performance Analysis. In Science Mapping of Digital Transformation in Business: A Bibliometric Analysis and Research Outlook. Springer, 2023:15–22. https://doi.org/10.1007/978-3-031-26765-9_3
- Aria M., Cuccurullo C. bibliometrix: An R-tool for comprehensive science mapping analysis. J Informetrics 2017:11(4):959–975. https://doi.org/10.1016/j.joi.2017.08.007
- Wang L., Zhang G., Wang Z., Liu J., Shang J., Liang L. Bibliometric analysis of remote sensing research trend in crop growth monitoring: A case study in China. Remote Sensing (Basel) 2019:11(7):809. https://doi.org/10.3390/rs11070809
- Liu J. S., Lu L. Y. Y., Lu W. M. Research fronts in data envelopment analysis. Omega 2016:58:33–45. https://doi.org/10.1016/j.omega.2015.04.004
- Kişi N. Bibliometric Analysis and Visualization of Global Research on Employee Engagement. Sustainability (Switzerland) 2023:15(13). https://doi.org/10.3390/su151310196
- Toom K. Chapter 10 – Indicators. In Research Management Andersen J., Toom K., Poli S., Miller P. F., (Eds.), Boston: Academic Press, 2018:213–230. https://doi.org/10.1016/B978-0-12-805059-0.00010-9
- Pranckutė R. Web of Science (WoS) and Scopus: the titans of bibliographic information in today’s academic world. Publications 2021:9(1). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/publications9010012
- Ullah R., Asghar I., Griffiths M. G. An Integrated Methodology for Bibliometric Analysis: A Case Study of Internet of Things in Healthcare Applications. Sensors 2023:23(1). https://doi.org/10.3390/s23010067
- Cobo M. J., López-Herrera A. G., Herrera-Viedma E., Herrera F. Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology 2011:62(7):1382–1402. https://doi.org/10.1002/asi.21525
- Kirby A. Exploratory Bibliometrics: Using VOSviewer as a Preliminary Research Tool. Publications 2023:11(1):10. https://doi.org/10.3390/publications11010010
- Kardaś D., Polesek-Karczewska S., Tiutiurski P., Wardach-Świȩcicka I. Applying dynamic mesh to examine evolution of effective thermal conductivity in porous medium undergoing macrostructure change. Applied Thermal Engineering 2021:187:116583. https://doi.org/10.1016/j.applthermaleng.2021.116583
- Kardaś D., Hercel P., Wardach-Świȩcicka I., Polesek-Karczewska S. On the kinetic rate of biomass particle decomposition – Experimental and numerical analysis. Energy 2021:219:119575. https://doi.org/10.1016/j.energy.2020.119575
- Awny A., et al. Finite element modeling of the breakage behavior of agricultural biomass pellets under different heights during handling and storage. Saudi J Biological Sciences 2022:29(3):1407–1415. https://doi.org/10.1016/j.sjbs.2021.11.034
- Peters B., Džiugys A., Navakas R. Simulation of thermal conversion of solid fuel by the discrete particle method. Lith. J. Phys. 2011:51:91–105. https://doi.org/10.3952/lithjphys.51204
- Zarzycki R., Kobyłecki R., Bis Z. Numerical analysis of the combustion of gases generated during biomass carbonization. Entropy 2020:22(2):181. https://doi.org/10.3390/e22020181
- Ismail T. M., El-Salam M. A. Parametric studies on biomass gasification process on updraft gasifier high temperature air gasification. Appl Therm Eng 2017:112:1460–1473. https://doi.org/10.1016/j.applthermaleng.2016.10.026
- Kardaś D., Kluska J., Kazimierski P. The course and effects of syngas production from beechwood and RDF in updraft reactor in the light of experimental tests and numerical calculations. Thermal Science and Engineering Progress 2018:8:136–144. https://doi.org/10.1016/j.tsep.2018.08.020
- Džiugys A., Peters B., Hunsinger H., Krebs L. Experimental and numerical evaluation of the transport behaviour of a moving fuel bed on a forward acting grate. Granular Matter 2007:9:387–399. https://doi.org/10.1007/s10035-007-0064-0
- Ansys Fluent: Fluid Simulation Software. [Online]. [Accessed: 01.04.2024]. Available: https://www.ansys.com/products/fluids/ansys-fluent
- Peters B., et al. XDEM multi-physics and multi-scale simulation technology: Review of DEM–CFD coupling, methodology and engineering applications. Particuology 2019:44:176–193. https://doi.org/10.1016/j.partic.2018.04.005
- LuXDEM: Luxembourg XDEM Research Centre, ‘Extended Discrete Element Method (XDEM)’, 2024. [Online]. [Accessed: 01.04.2024]. Available: https://luxdem.uni.lu/