Have a personal or library account? Click to login
Numerical Evaluation of Harmful Consequences after Accidental Explosion at a Hydrogen Filling Station Cover

Numerical Evaluation of Harmful Consequences after Accidental Explosion at a Hydrogen Filling Station

Open Access
|Jun 2024

References

  1. Safety and Security Analysis: Investigative Report by NASA on Proposed EPA Hydrogen-Powered Vehicle Fueling Station. Assessment and Standards Division Office of Transportation and Air Quality U.S. Environment Protection Agency, EPA420-R-04-016 October 2004. 45 p.
  2. Sato Y., Iwabuchi H., Groethe M., Merilo E., Chiba S. Experiments on hydrogen deflagration. Journal of Power Sources 2006:159(1):144–148. https://doi.org/10.1016/j.jpowsour.2006.04.062
  3. Puttock G. S., Colenbrander G. W., Blackmore D. R., Maplin Sands experiments 1980: Dispersion results from continuous releases of refrigerated liquid propane, S. Hartwig (ed), Heavy Gas and Risk Assessment 1980:11:147–161. https://doi.org/10.1007/978-94-009-7151-6_9
  4. Garcia, J., Baraldi, D., Gallego, E., Beccantini, A., Crespo A., Hansen O. R., Hoiset S., Kotchourko A., Makarov D., Migoya E., Molkov V., Voort M. M., Yanez J. An intercomparison exercise on the capabilities of CFD models to reproduce a large-scale hydrogen deflagration in open atmosphere. International Journal of Hydrogen Energy 2010:35(9):4435–4444. https://doi.org/10.1016/j.ijhydene.2010.02.011
  5. Skob Y., Ugryumov M., Granovskiy E. Numerical Evaluation of Probability of Harmful Impact Caused by Toxic Spill Emergencies. Environmental and Climate Technologies 2019:23:1–14. https://doi.org/10.2478/rtuect-2019-0075
  6. Sathiah P., Holler T., Kljenak I., Komen E. The role of CFD combustion modeling in hydrogen safety management – V: Validation for slow deflagrations in homogeneous hydrogen-air experiments. Nuclear Engineering and Design 2016:310:520–531. https://doi.org/10.1016/j.nucengdes.2016.06.030
  7. Skob Y., Yakovlev S., Pichugina O., Kalinichenko M., Korobchynskyi K. Mathematical Modelling of Gas Admixtures Release, Dispersion and Explosion in Open Atmosphere. CEUR Workshop Proceedings 2023:3641:168–181.
  8. Skob Y., Yakovlev S., Korobchynskyi K., Kalinichenko M. Numerical Assessment of Terrain Relief Influence on Consequences for Humans Exposed to Gas Explosion Overpressure. Computation 2023:11(2):19. https://doi.org/10.3390/computation11020019
  9. McQuaid J. Trials on dispersion of heavy gas clouds. Plant/Operations Progress 1985:4(1):58–61. https://doi.org/10.1002/prsb.720040112
  10. Zatorska E. On the steady flow of a multicomponent, compressible, chemically reacting gas. Nonlinearity 2011:24:11. https://doi.org/10.1088/0951-7715/24/11/013
  11. Gotaas Y. Heavy gas dispersion and environmental conditions as revealed by the Thorney Island experiments. Journal of Hazardous Materials 1985:11:399–408. https://doi.org/10.1016/0304-3894(85)85050-0
  12. Skob Y., Yakovlev S., Pichugina O., Kalinichenko M., Korobchynskyi K., Hulianytskyi A. Numerical Evaluation of Wind Speed Influence on Accident Toxic Spill Consequences Scales. Environmental and Climate Technologies 2023:27:450–463. https://doi.org/10.2478/rtuect-2023-0033 Colenbrander G. W., Puttock J. S. Maplin Sands Experiments 1980: Interpretation and Modelling of Liquefied Gas Spills onto the Sea. In: Ooms, G., Tennekes, H. (eds) Atmospheric Dispersion of Heavy Gases and Small Particles 1984:277–295. https://doi.org/10.1007/978-3-642-82289-6_22
  13. Men’shikov V., Skob Y., Ugryumov M. Solution of the three-dimensional turbomachinery blade row flow field problem with allowance for viscosity effects. Fluid Dynamics 1991:26(6):889–896. https://doi.org/10.1007/BF01056792
  14. Tregillis I. L., Koskelo A. Analytic Solutions as a Tool for Verification and Validation of a Multiphysics Model. Journal of Verification, Validation and Uncertainty Quantification 2019:4(4):041004. https://doi.org/10.1115/1.4045747
  15. Markiewicz T. A review of mathematical models for the atmospheric dispersion of heavy gases. Part I. A classification of models. Ecological Chemistry and Engineering S 2012:19(3):297–314. https://doi.org/10.2478/v10216-011-0022-y
  16. Walker E. L., Tanenbaum B. S. Investigation of Kinetic Models for Gas Mixtures. Physics of Fluids 1968:11:1951–1954. https://doi.org/10.1063/1.1692224
  17. Mansha M., Saleemi A.R., Ghauri B. M. Kinetic models of natural gas combustion in an internal combustion engine. Journal of Natural Gas Chemistry 2010:19(1):6–14. https://doi.org/10.1016/S1003-9953(09)60024-4
  18. Yu H., Zhang X. Molecular-kinetic study of multilayers gas-adsorption in a rarefied gas environment. Physics of Fluids 2022:34(12):123106. https://doi.org/10.1063/5.0124970
  19. Rogulski M. Indoor PM10 concentration measurements using low-cost monitors in selected locations in Warsaw. Energy Procedia 2018:147:137–144. https://doi.org/10.1016/j.egypro.2018.07.043
  20. Barisa A., Rosa M. Scenario analysis of CO2 emission reduction potential in road transport sector in Latvia. Energy Procedia 2018:147:86–95. https://doi.org/10.1016/j.egypro.2018.07.036
  21. Puttock J. S., McFarlane K., Prothero A., Rees F. J., Blewitt D. N. Dispersion models and hydrogen fluoride predictions. Journal of Loss Prevention in the Process Industries 1991:4(1):16–28. https://doi.org/10.1016/0950-4230(91)80003-D
  22. Folch A., Costa A., Hankin R. K. S. twodee-2: A shallow layer model for dense gas dispersion on complex topography. Computers & Geosciences 2009:35(3):667–674. https://doi.org/10.1016/j.cageo.2007.12.017
  23. Kopka P., Wawrzynczak A. Framework for stochastic identification of atmospheric contamination source in an urban area. Atmospheric Environment 2018:195:63–77. https://doi.org/10.1016/j.atmosenv.2018.09.035
  24. Burns D. S., Rottmann S. D., Plitz A. B. L., Wiseman F. L., Chynwat V. A simplified chemistry module for atmospheric transport and dispersion models: Proof-of-concept using SCIPUFF. Atmospheric Environment 2012:56:212–221. https://doi.org/10.1016/j.atmosenv.2012.03.067
  25. Merah A., Noureddine A. Reactive pollutants dispersion modeling in a street Canyon. International Journal of Applied Mechanics and Engineering 2019:24(1):91–103. https://doi.org/10.2478/ijame-2019-0006
  26. Arvidson S., Davidson L., Peng S.-H. Interface methods for grey-area mitigation in turbulence-resolving hybrid RANS-LES. International Journal Heat and Fluid Flow 2018:73:236–257. https://doi.org/10.1016/j.ijheatfluidflow.2018.08.005
  27. Lipatnikov A. N., Sabelnikov V. A., Poludnenko A. Y. Assessment of a transport equation for mean reaction rate using DNS data obtained from highly unsteady premixed turbulent flames. International Journal Heat and Mass Transfer 2019:134:398–404. https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.043
  28. Galeev A. D., Starovoitova E. V., Ponikarov S. I. Numerical simulation of the formation of a toxic cloud on outpouring ejection of liquefied chlorine to the atmosphere. Journal of Engineering Physics and Thermophysics 2013:86(1):219–228. https://doi.org/10.1007/s10891-013-0823-1
  29. Snegirev A. Y., Frolov A. S. The large eddy simulation of a turbulent diffusion flame. High Temperature 2011:49:690–704. https://doi.org/10.1134/S0018151X11040201
  30. Salamonowicz Z., Krauze A., Majder-Lopatka M., Dmochowska A., Piechota-Polanczyk A., Polanczyk A. Numerical Reconstruction of Hazardous Zones after the Release of Flammable Gases during Industrial Processes. Processes 2021:9(2):307. https://doi.org/10.3390/pr9020307
  31. Sutthichaimethee P., Ariyasajjakorn D. Forecast of Carbon Dioxide Emissions from Energy Consumption in Industry Sectors in Thailand Env. and Climate Technologies 2018:22(1):107–117. https://doi.org/10.2478/rtuect-2018-0007
  32. Slisane D., Blumberga D. Assessment of Roadside Particulate Emission Mitigation Possibilities Environmental and Climate Technologies 2013:12(1):4–9. https://doi.org/10.2478/rtuect-2013-0009
  33. RD-03-26-2007. Metodicheskiye ukazaniya po otsenke posledstviy avariynykh vybrosov opasnykh veshchestv (Methodological guidelines for the assessment of the consequences of accidental releases of hazardous substances). Moscow, STC Industrial safety, 2008:27(6):122. (In Russian).
  34. Skob Y., Ugryumov M., Granovskiy E. Numerical assessment of hydrogen explosion consequences in a mine tunnel. International Journal of Hydrogen Energy 2021:46(23):12361–12371. https://doi.org/10.1016/j.ijhydene.2020.09.067
  35. Skob Y., Ugryumov M., Dreval Y. Numerical Modelling of Gas Explosion Overpressure Mitigation Effects. Materials Science Forum 2020:1006:117–122. https://doi.org/10.4028/www.scientific.net/MSF.1006.117
  36. Skob Y., Ugryumov M., Dreval Y., Artemiev S. Numerical Evaluation of Safety Wall Bending Strength during Hydrogen Explosion. Materials Science Forum 2021:1038:430–436. https://doi.org/10.4028/www.scientific.net/MSF.1038.430
  37. Skob Y., Dreval Y., Vasilchenko A., Maiboroda R. Selection of Material and Thickness of the Protective Wall in the Conditions of a Hydrogen Explosion of Various Power. Key Engineering Materials 2023:952:121–129. https://doi.org/10.4028/p-ST1VeT
DOI: https://doi.org/10.2478/rtuect-2024-0015 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 181 - 194
Submitted on: Apr 8, 2024
Accepted on: May 9, 2024
Published on: Jun 19, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Yurii Skob, Sergiy Yakovlev, Oksana Pichugina, Mykola Kalinichenko, Oleksii Kartashov, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.