Have a personal or library account? Click to login
Application of Synthesized Hydrates in the National Economy Cover

Application of Synthesized Hydrates in the National Economy

Open Access
|Apr 2024

References

  1. Boswell R., Hancock S., Yamamoto K., Collett T., Pratap M., Lee S.-R. 6 - Natural Gas Hydrates: Status of Potential as an Energy Resource. Future Energy (Third Edition) Improved, Sustainable and Clean Options for our Planet 2020:111–131. https://doi.org/10.1016/B978-0-08-102886-5.00006-2">https://doi.org/10.1016/B978-0-08-102886-5.00006-2
  2. Xu H., Kong W., Yang F. Decomposition characteristics of natural gas hydrates in hydraulic lifting pipelines. Natural Gas Industry B 2019:6(2):159–167. https://doi.org/10.1016/j.ngib.2018.07.005">https://doi.org/10.1016/j.ngib.2018.07.005
  3. Zhang P., Chen X., Li S., Wu Q., Xu Zh. Heat transfer and water migration rules during formation/dissociation of methane hydrate under temperature fields with gradient. International Journal of Heat and Mass Transfer 2021:169:120929. https://doi.org/10.1016/j.ijheatmasstransfer.2021.120929">https://doi.org/10.1016/j.ijheatmasstransfer.2021.120929
  4. Veluswamy H. P., Kumar A., Seo Y., Lee Ju D., Linga P. A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates. Applied Energy 2018:216:262–285. https://doi.org/10.1016/j.apenergy.2018.02.059">https://doi.org/10.1016/j.apenergy.2018.02.059
  5. Pavlenko A. M. Thermodynamic Features of the Intensive Formation of Hydrocarbon Hydrates. Energies 2020:13(13):3396. https://doi.org/10.3390/en13133396">https://doi.org/10.3390/en13133396
  6. Bahadori A. (ed.) Chapter 13 – Liquefied Natural Gas (LNG). Natural Gas Processing 2014:591–632. https://doi.org/10.1016/B978-0-08-099971-5.00013-1">https://doi.org/10.1016/B978-0-08-099971-5.00013-1
  7. Kiran B. S., Sowjanya K., Prasad P. S., Yoon J. H. Experimental investigations on tetrahydrofuran-methanewater system: Rapid methane gas storage in hydrates. Oil Gas Sci. Technol. Rev. IFP Energ. Nouv. 2019:74(12). https://doi.org/10.2516/ogst/2018092">https://doi.org/10.2516/ogst/2018092
  8. Wang C., Li X., Liang S., Li Q., Pang W., Zhao B., Chen G., Sun C. Modeling on effective thermal conductivity of hydrate-bearing sediments considering the shape of sediment particle. Energy 2023:285:129338. https://doi.org/10.1016/j.energy.2023.129338">https://doi.org/10.1016/j.energy.2023.129338
  9. Zhao J., Lv Q., Li Y., Yang M., Liu W., Yao L., Wang S., Zhang Y., Song Y. In-situ visual observation for the formation and dissociation of methane hydrates in porous media by magnetic resonance imaging. Magn. Reson. Imaging 2015:33(4):485–490. https://doi.org/10.1016/j.mri.2014.12.010">https://doi.org/10.1016/j.mri.2014.12.010
  10. Pavlenko A. M., Koshlak H. Intensification of Gas Hydrate Formation Processes by Renewal of Interfacial Area between Phases. Energies 2021:14(18):5912. https://doi.org/10.3390/en14185912">https://doi.org/10.3390/en14185912
  11. Pavlenko A. M. Change of emulsion structure during heating and boiling. International Journal of Energy for a Clean Environment 2019:20(4):291–302. https://doi.org/10.1615/InterJEnerCleanEnv.2019032616">https://doi.org/10.1615/InterJEnerCleanEnv.2019032616
  12. Pavlenko A. M., Basok B. Regularities of Boiling-Up of Emulsified Liquids. Heat Transfer Research 2005:36:419–424. https://doi.org/10.1615/HeatTransRes.v36.i5.90">https://doi.org/10.1615/HeatTransRes.v36.i5.90
  13. Prasad P. S. R., Kiran B. S. Self-preservation and Stability of Methane Hydrates in the Presence of NaCl. Sci Rep 2019:9:5860. https://doi.org/10.1038/s41598-019-42336-1">https://doi.org/10.1038/s41598-019-42336-1
  14. Chang S. Comparing Exploitation and Transportation Technologies for Monetisation of Offshore Stranded Gas. Presented at SPE Asia Pacific Oil and Gas Conference and Exhibition: Indonesia, Jakarta, 2001, 17–19 April. https://doi.org/10.2523/68680-MS">https://doi.org/10.2523/68680-MS
  15. Economides M. J., Sun K., Subero G. Compressed Natural Gas (CNG): An Alternative to Liquefied Natural Gas (LNG). Journal SPE Production & Operations 2006:21(2):318–324. https://doi.org/10.2118/92047-PA">https://doi.org/10.2118/92047-PA
  16. Pavlenko A. M., Koshlak H. A New Method for the Rapid Synthesis of Gas Hydrates for their Storage and Transportation. Environmental and Climate Technologies 2022:26(1):199–212. https://doi.org/10.2478/rtuect-2022-0016">https://doi.org/10.2478/rtuect-2022-0016
  17. Pavlenko A., Koshlak H. Heat and Mass Transfer During Phase Transitions in Liquid Mixtures. Rocznik Ochrona Środowiska 2019:21:234–249.
  18. Majid A. A. A., Koh C. A. 8 – Self-preservation phenomenon in gas hydrates and its application for energy storage, Elliot R. Bernstein (Eds.). In Developments in Physical & Theoretical Chemistry, Intra- and Intermolecular Interactions Between Non-covalently Bonded Species. Elsevier, 2021:267–285. https://doi.org/10.1016/B978-0-12-817586-6.00008-6">https://doi.org/10.1016/B978-0-12-817586-6.00008-6
  19. Burla S. K., Pinnelli P. S. R. Experimental evidence on the prolonged stability of CO2 hydrates in the self-preservation region, Case Studies in Chemical and Environmental Engineering 2023:7:100335. https://doi.org/10.1016/j.cscee.2023.100335">https://doi.org/10.1016/j.cscee.2023.100335
DOI: https://doi.org/10.2478/rtuect-2024-0013 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 149 - 164
Submitted on: Feb 3, 2024
Accepted on: Mar 8, 2024
Published on: Apr 23, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2024 Anatoliy Pavlenko, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.