Have a personal or library account? Click to login
Research of Insertion Loss of Multilayered Construction with Devulcanized Waste Rubber Cover

Research of Insertion Loss of Multilayered Construction with Devulcanized Waste Rubber

Open Access
|Mar 2024

References

  1. Shen W., et al. Investigation on polymer-rubber aggregate modified porous concrete. Constr. Build. Mater. 2013:38:667–674. https://doi.org/10.1016/j.conbuildmat.2012.09.006">https://doi.org/10.1016/j.conbuildmat.2012.09.006
  2. Azevedo F., et al. Properties and durability of HPC with tyre rubber wastes. Constr. Build. Mater. 2012:34:186–191. https://doi.org/10.1016/j.conbuildmat.2012.02.062">https://doi.org/10.1016/j.conbuildmat.2012.02.062
  3. Shu X., Huang B. Recycling of waste tire rubber in asphalt and portland cement concrete: An overview. Constr. Build. Mater. 2014:37(B):217–224. https://doi.org/10.1016/j.conbuildmat.2013.11.027">https://doi.org/10.1016/j.conbuildmat.2013.11.027
  4. Wang D. W., Ma L. Sound transmission through composite sandwich plate with pyramidal truss cores. Compos. Struct. 2017:164:104–117. https://doi.org/10.1016/j.compstruct.2016.11.088">https://doi.org/10.1016/j.compstruct.2016.11.088
  5. Kovler K., Roussel N. Properties of fresh and hardened concrete. Cem. Concr. Res. 2011:41(7):775–792. https://doi.org/10.1016/j.cemconres.2011.03.009">https://doi.org/10.1016/j.cemconres.2011.03.009
  6. Najim K. B., Hall M. R. Mechanical and dynamic properties of self-compacting crumb rubber modified concrete. Constr. Build. Mater. 2012:27(1):521–530. https://doi.org/10.1016/j.conbuildmat.2011.07.013">https://doi.org/10.1016/j.conbuildmat.2011.07.013
  7. Uygunoǧlu T., Topçu I. B. The role of scrap rubber particles on the drying shrinkage and mechanical properties of self-consolidating mortars. Constr. Build. Mater. 2010:24(7):1141–1150. https://doi.org/10.1016/j.conbuildmat.2009.12.027">https://doi.org/10.1016/j.conbuildmat.2009.12.027
  8. Medina N. F., et al. Composites with recycled rubber aggregates: Properties and opportunities in construction. Constr. Build. Mater. 2018:118:884–897. https://doi.org/10.1016/j.conbuildmat.2018.08.069">https://doi.org/10.1016/j.conbuildmat.2018.08.069
  9. Ghowsi M. A., Jamshidi M. Recycling waste nitrile rubber (NBR) and improving mechanical properties of Revulcanized rubber by an efficient chemo-mechanical devulcanization. Adv. Ind. Eng. Polym. Res. 2023:6(3):255–264. https://doi.org/10.1016/j.aiepr.2023.01.004">https://doi.org/10.1016/j.aiepr.2023.01.004
  10. Xu X., et al. Sound absorbing properties of perforated composite panels of recycled rubber, fiberboard sawdust, and high density polyethylene. J. Clean. Prod. 2018:187:215–221. https://doi.org/10.1016/j.jclepro.2018.03.174">https://doi.org/10.1016/j.jclepro.2018.03.174
  11. Lee J. H., et al. Insertion loss of sound waves through composite acoustic window materials. Curr. Appl. Phys. 2010:10(1):138–144. https://doi.org/10.1016/j.cap.2009.05.017">https://doi.org/10.1016/j.cap.2009.05.017
  12. Kim H. S., et al. A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method. Int. J. Nav. Archit. Ocean Eng. 2014:6(4):894–903. https://doi.org/10.2478/IJNAOE-2013-0220">https://doi.org/10.2478/IJNAOE-2013-0220
  13. Lyon R. H. Noise Reduction of Rectangular Enclosures with One Flexible Wall. J. Acoust. Soc. Am. 1963:35:1791–1797. https://doi.org/10.1121/1.1918822">https://doi.org/10.1121/1.1918822
  14. Lee Y. Y., Ng C. F. Sound insertion loss of stiffened enclosure plates using the finite element method and the classical approach. J. Sound Vib. 1998:217(2):239–260. https://doi.org/10.1006/jsvi.1998.1748">https://doi.org/10.1006/jsvi.1998.1748
  15. Al-Bassyiouni M., Balachandran B. Sound transmission through a flexible panel into an enclosure: Structural-acoustics model. J. Sound Vib. 2005:284(1–2):467–486. https://doi.org/10.1016/j.jsv.2004.06.040">https://doi.org/10.1016/j.jsv.2004.06.040
  16. Kosała K., Majkut L., Olszewski R. Experimental study and prediction of insertion loss of acoustical enclosures. Vib. Phys. Syst. 2020:31(1):1–8.
  17. Ma X., et al. Mechanisms of active control of noise transmission through triple-panel system using single control force on the middle plate. Appl. Acoust. 2014:85:111–122. https://doi.org/10.1016/j.apacoust.2014.04.014">https://doi.org/10.1016/j.apacoust.2014.04.014
  18. London A. Transmission of Reverberant Sound through Double Walls. J. Acoust. Soc. Am. 1950:22:270–279. https://doi.org/10.1121/1.1906601">https://doi.org/10.1121/1.1906601
  19. Mulholland K. A., Parbrook H. D., Cummings A. The transmission loss of double panels. J. Sound Vib. 1967:6(3):324–334. https://doi.org/10.1016/0022-460X(67)90205-2">https://doi.org/10.1016/0022-460X(67)90205-2
  20. Heckl M. The Tenth Sir Richard Fairey Memorial Lecture: Sound transmission in buildings. J. Sound Vib. 1981:77(2):165–189. https://doi.org/10.1016/S0022-460X(81)80018-1">https://doi.org/10.1016/S0022-460X(81)80018-1
  21. Fahy F. Foundations of Engineering Acoustics. Elsevier, 2003.
  22. Fahy F., Gardonio P. Sound and Structural Vibration—Radiation, Transmission and Response. Noise Control Eng. J. 2007:55(3):373–374. https://doi.org/10.3397/1.2741307">https://doi.org/10.3397/1.2741307
  23. Kurra S., Arditi D. Determination of sound transmission loss of multilayered elements Part 1: Predicted and measured results. Act. Acust. Un. Acust. 2001:54(3):832–842. https://doi.org/10.1002/art.21672">https://doi.org/10.1002/art.21672
  24. Kang H.-J., et al. Prediction of sound transmission loss through multilayered panels by using Gaussian distribution of directional incident energy. J. Acoust. Soc. Am. 2000:107:1413–1420. https://doi.org/10.1121/1.428428">https://doi.org/10.1121/1.428428
  25. Cremer L., Heckl M., Petersson B. A. T. Structure-borne sound. Berlin: Springer, 2005.
  26. Brunskog J. The influence of finite cavities on the sound insulation of double-plate structures. J. Acoust. Soc. Am. 2005:117:3727–3739. https://doi.org/10.1121/1.1904264">https://doi.org/10.1121/1.1904264
  27. Gu Q., Wang J. Effect of resilient connection on sound transmission loss of metal stud double panel partitions. Chinese J. Acoust. 1983.
  28. Poblet-Puig J., et al. The role of studs in the sound transmission of double walls. Act. Acust. Un. Acust. 2009:95(3):555–567. https://doi.org/10.3813/AAA.918176">https://doi.org/10.3813/AAA.918176
  29. Davy J. L. Predicting the Sound Insulation of Walls. Build. Acoust., 2009:16(1):1–20. https://doi.org/10.1260/135101009788066546">https://doi.org/10.1260/135101009788066546
  30. Davy J. L. The improvement of a simple theoretical model for the prediction of the sound insulation of double leaf walls. J. Acoust. Soc. Am. 2010:127:841–849. https://doi.org/10.1121/1.3273889">https://doi.org/10.1121/1.3273889
  31. Vigran T. E. Sound insulation of double-leaf walls - Allowing for studs of finite stiffness in a transfer matrix scheme. Appl. Acoust. 2010:71(7):616–621. https://doi.org/10.1016/j.apacoust.2010.02.003">https://doi.org/10.1016/j.apacoust.2010.02.003
  32. Van den Wyngaert J. C. E., Schevenels M., Reynders E. P. B. Predicting the sound insulation of finite double-leaf walls with a flexible frame. Appl. Acoust. 2018:141:93–105. https://doi.org/10.1016/j.apacoust.2018.06.020">https://doi.org/10.1016/j.apacoust.2018.06.020
  33. Craik R. J. M., Smith R. S. Sound transmission through double leaf lightweight partitions. Part I: Airborne sound. Appl. Acoust. 2000:61(2):223–245. https://doi.org/10.1016/S0003-682X(99)00070-5">https://doi.org/10.1016/S0003-682X(99)00070-5
  34. Hwang S., et al. Prediction of sound reduction index of double sandwich panel. Appl. Acoust. 2015:93:44–50. https://doi.org/10.1016/j.apacoust.2015.01.017">https://doi.org/10.1016/j.apacoust.2015.01.017
  35. Long M. Sound Transmission Loss. Architectural Acoustics. 2nd Ed. Elsevier, 2014:345–382. [
  36. Kosała K. Calculation models for analysing the sound insulating properties of homogeneous single baffles used in vibroacoustic protection. Appl. Acoust. 2019:146:108–117. https://doi.org/10.1016/j.apacoust.2018.11.012">https://doi.org/10.1016/j.apacoust.2018.11.012
DOI: https://doi.org/10.2478/rtuect-2024-0011 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 120 - 134
Submitted on: Apr 13, 2023
Accepted on: Nov 22, 2023
Published on: Mar 9, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2024 Tomas Vilniškis, Tomas Januševičius, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.