Azevedo F., et al. Properties and durability of HPC with tyre rubber wastes. Constr. Build. Mater. 2012:34:186–191. https://doi.org/10.1016/j.conbuildmat.2012.02.062">https://doi.org/10.1016/j.conbuildmat.2012.02.062
Shu X., Huang B. Recycling of waste tire rubber in asphalt and portland cement concrete: An overview. Constr. Build. Mater. 2014:37(B):217–224. https://doi.org/10.1016/j.conbuildmat.2013.11.027">https://doi.org/10.1016/j.conbuildmat.2013.11.027
Wang D. W., Ma L. Sound transmission through composite sandwich plate with pyramidal truss cores. Compos. Struct. 2017:164:104–117. https://doi.org/10.1016/j.compstruct.2016.11.088">https://doi.org/10.1016/j.compstruct.2016.11.088
Kovler K., Roussel N. Properties of fresh and hardened concrete. Cem. Concr. Res. 2011:41(7):775–792. https://doi.org/10.1016/j.cemconres.2011.03.009">https://doi.org/10.1016/j.cemconres.2011.03.009
Najim K. B., Hall M. R. Mechanical and dynamic properties of self-compacting crumb rubber modified concrete. Constr. Build. Mater. 2012:27(1):521–530. https://doi.org/10.1016/j.conbuildmat.2011.07.013">https://doi.org/10.1016/j.conbuildmat.2011.07.013
Uygunoǧlu T., Topçu I. B. The role of scrap rubber particles on the drying shrinkage and mechanical properties of self-consolidating mortars. Constr. Build. Mater. 2010:24(7):1141–1150. https://doi.org/10.1016/j.conbuildmat.2009.12.027">https://doi.org/10.1016/j.conbuildmat.2009.12.027
Medina N. F., et al. Composites with recycled rubber aggregates: Properties and opportunities in construction. Constr. Build. Mater. 2018:118:884–897. https://doi.org/10.1016/j.conbuildmat.2018.08.069">https://doi.org/10.1016/j.conbuildmat.2018.08.069
Ghowsi M. A., Jamshidi M. Recycling waste nitrile rubber (NBR) and improving mechanical properties of Revulcanized rubber by an efficient chemo-mechanical devulcanization. Adv. Ind. Eng. Polym. Res. 2023:6(3):255–264. https://doi.org/10.1016/j.aiepr.2023.01.004">https://doi.org/10.1016/j.aiepr.2023.01.004
Xu X., et al. Sound absorbing properties of perforated composite panels of recycled rubber, fiberboard sawdust, and high density polyethylene. J. Clean. Prod. 2018:187:215–221. https://doi.org/10.1016/j.jclepro.2018.03.174">https://doi.org/10.1016/j.jclepro.2018.03.174
Lee J. H., et al. Insertion loss of sound waves through composite acoustic window materials. Curr. Appl. Phys. 2010:10(1):138–144. https://doi.org/10.1016/j.cap.2009.05.017">https://doi.org/10.1016/j.cap.2009.05.017
Kim H. S., et al. A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method. Int. J. Nav. Archit. Ocean Eng. 2014:6(4):894–903. https://doi.org/10.2478/IJNAOE-2013-0220">https://doi.org/10.2478/IJNAOE-2013-0220
Lyon R. H. Noise Reduction of Rectangular Enclosures with One Flexible Wall. J. Acoust. Soc. Am. 1963:35:1791–1797. https://doi.org/10.1121/1.1918822">https://doi.org/10.1121/1.1918822
Lee Y. Y., Ng C. F. Sound insertion loss of stiffened enclosure plates using the finite element method and the classical approach. J. Sound Vib. 1998:217(2):239–260. https://doi.org/10.1006/jsvi.1998.1748">https://doi.org/10.1006/jsvi.1998.1748
Al-Bassyiouni M., Balachandran B. Sound transmission through a flexible panel into an enclosure: Structural-acoustics model. J. Sound Vib. 2005:284(1–2):467–486. https://doi.org/10.1016/j.jsv.2004.06.040">https://doi.org/10.1016/j.jsv.2004.06.040
Ma X., et al. Mechanisms of active control of noise transmission through triple-panel system using single control force on the middle plate. Appl. Acoust. 2014:85:111–122. https://doi.org/10.1016/j.apacoust.2014.04.014">https://doi.org/10.1016/j.apacoust.2014.04.014
London A. Transmission of Reverberant Sound through Double Walls. J. Acoust. Soc. Am. 1950:22:270–279. https://doi.org/10.1121/1.1906601">https://doi.org/10.1121/1.1906601
Mulholland K. A., Parbrook H. D., Cummings A. The transmission loss of double panels. J. Sound Vib. 1967:6(3):324–334. https://doi.org/10.1016/0022-460X(67)90205-2">https://doi.org/10.1016/0022-460X(67)90205-2
Heckl M. The Tenth Sir Richard Fairey Memorial Lecture: Sound transmission in buildings. J. Sound Vib. 1981:77(2):165–189. https://doi.org/10.1016/S0022-460X(81)80018-1">https://doi.org/10.1016/S0022-460X(81)80018-1
Fahy F., Gardonio P. Sound and Structural Vibration—Radiation, Transmission and Response. Noise Control Eng. J. 2007:55(3):373–374. https://doi.org/10.3397/1.2741307">https://doi.org/10.3397/1.2741307
Kurra S., Arditi D. Determination of sound transmission loss of multilayered elements Part 1: Predicted and measured results. Act. Acust. Un. Acust. 2001:54(3):832–842. https://doi.org/10.1002/art.21672">https://doi.org/10.1002/art.21672
Kang H.-J., et al. Prediction of sound transmission loss through multilayered panels by using Gaussian distribution of directional incident energy. J. Acoust. Soc. Am. 2000:107:1413–1420. https://doi.org/10.1121/1.428428">https://doi.org/10.1121/1.428428
Brunskog J. The influence of finite cavities on the sound insulation of double-plate structures. J. Acoust. Soc. Am. 2005:117:3727–3739. https://doi.org/10.1121/1.1904264">https://doi.org/10.1121/1.1904264
Poblet-Puig J., et al. The role of studs in the sound transmission of double walls. Act. Acust. Un. Acust. 2009:95(3):555–567. https://doi.org/10.3813/AAA.918176">https://doi.org/10.3813/AAA.918176
Davy J. L. Predicting the Sound Insulation of Walls. Build. Acoust., 2009:16(1):1–20. https://doi.org/10.1260/135101009788066546">https://doi.org/10.1260/135101009788066546
Davy J. L. The improvement of a simple theoretical model for the prediction of the sound insulation of double leaf walls. J. Acoust. Soc. Am. 2010:127:841–849. https://doi.org/10.1121/1.3273889">https://doi.org/10.1121/1.3273889
Vigran T. E. Sound insulation of double-leaf walls - Allowing for studs of finite stiffness in a transfer matrix scheme. Appl. Acoust. 2010:71(7):616–621. https://doi.org/10.1016/j.apacoust.2010.02.003">https://doi.org/10.1016/j.apacoust.2010.02.003
Van den Wyngaert J. C. E., Schevenels M., Reynders E. P. B. Predicting the sound insulation of finite double-leaf walls with a flexible frame. Appl. Acoust. 2018:141:93–105. https://doi.org/10.1016/j.apacoust.2018.06.020">https://doi.org/10.1016/j.apacoust.2018.06.020
Craik R. J. M., Smith R. S. Sound transmission through double leaf lightweight partitions. Part I: Airborne sound. Appl. Acoust. 2000:61(2):223–245. https://doi.org/10.1016/S0003-682X(99)00070-5">https://doi.org/10.1016/S0003-682X(99)00070-5
Hwang S., et al. Prediction of sound reduction index of double sandwich panel. Appl. Acoust. 2015:93:44–50. https://doi.org/10.1016/j.apacoust.2015.01.017">https://doi.org/10.1016/j.apacoust.2015.01.017
Kosała K. Calculation models for analysing the sound insulating properties of homogeneous single baffles used in vibroacoustic protection. Appl. Acoust. 2019:146:108–117. https://doi.org/10.1016/j.apacoust.2018.11.012">https://doi.org/10.1016/j.apacoust.2018.11.012