Murayama N., Yamamoto H., Shibata J. Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction. Int J Miner Process 2002:64:1–17. https://doi.org/10.1016/S0301-7516(01)00046-1">https://doi.org/10.1016/S0301-7516(01)00046-1
Lestari W. W., Hasanah D. N., Putra R., Mukti R. R., Nugrahaningtyas K. D. Transformation of Indonesian Natural Zeolite into Analcime Phase under Hydrothermal Condition. IOP Conf Ser Mater Sci Eng 2018:349:012068. https://doi.org/10.1088/1757-899X/349/1/012068">https://doi.org/10.1088/1757-899X/349/1/012068
Sandoval M. V., Henao J. A., Ríos C. A., Williams C. D., Apperley D. C. Synthesis and characterization of zeotype ANA framework by hydrothermal reaction of natural clinker. Fuel 2009:88(2):272–281. https://doi.org/10.1016/j.fuel.2008.08.017">https://doi.org/10.1016/j.fuel.2008.08.017
Novembre D., Gimeno D. Synthesis and characterization of analcime (ANA) zeolite using a kaolinitic rock. Sci Rep 2021:11:13373. https://doi.org/10.1038/s41598-021-92862-0">https://doi.org/10.1038/s41598-021-92862-0
Rasmussen S. T., Groh C. L., O’Brien W. J. Stress induced phase transformation of a cesium stabilized leucite porcelain and associated properties. Dent Mater 1998:14(3):202–11. https://doi.org/10.1016/S0109-5641(98)00033-5">https://doi.org/10.1016/S0109-5641(98)00033-5
Azizi S. N., Ehsani Tilami S. Cu-modified analcime as a catalyst for oxidation of benzyl alcohol: Experimental and theoretical. Microporous Mesoporous Materials 2013:167:89–93. https://doi.org/10.1016/j.micromeso.2012.03.034">https://doi.org/10.1016/j.micromeso.2012.03.034
Shah R. K. Facile synthesis of novel NiS-Analcime composite for the efficient photocatalytic degradation of Eriochrome Black T dye. Int J Environ Anal Chem 2020:102(19):8331–8345. https://doi.org/10.1080/03067319.2020.1849652">https://doi.org/10.1080/03067319.2020.1849652
Dyer A., Tangkawanit S., Rangsriwatananon K. Exchange diffusion of Cu2+, Ni2+, Pb2+ and Zn2+ into analcime synthesized from perlite. Microporous Mesoporous Materials 2004:75(3):273–279. https://doi.org/10.1016/j.micromeso.2004.07.007">https://doi.org/10.1016/j.micromeso.2004.07.007
Ehsani Tilami S., Naser Azizi S. Methionine templated analcime for enhancing heavy metal adsorption. Science Asia 2017:43(1):42–46. https://doi.org/10.2306/scienceasia1513-1874.2017.43.042">https://doi.org/10.2306/scienceasia1513-1874.2017.43.042
Atta A. Y., Jibril B. Y., Aderemi B. O., Adefila S. S. Preparation of analcime from local kaolin and rice husk ash. Appl Clay Sci 2012:61:8–13. https://doi.org/10.1016/j.clay.2012.02.018">https://doi.org/10.1016/j.clay.2012.02.018
Yuan J., Yang J., Ma H., Liu C., Zhao C. Hydrothermal synthesis of analcime and hydroxycancrinite from K-feldspar in Na2 SiO3 solution: characterization and reaction mechanism. RSC Adv 2016:59:54503–54509. https://doi.org/10.1039/C6RA08080D">https://doi.org/10.1039/C6RA08080D
Maldonado M., Oleksiak M. D., Chinta S., Rimer J. D. Controlling Crystal Polymorphism in Organic-Free Synthesis of Na-Zeolites. J Am Chem Soc 2013:135(7):2641–2652. https://doi.org/10.1021/ja3105939">https://doi.org/10.1021/ja3105939
Sobuś N., Czekaj I., Diichuk V., Kobasa I. M. Characteristics of the structure of natural zeolites and their potential application in catalysis and adsorption processes. Tech Trans 2020:117:1–20. https://doi.org/10.37705/TechTrans/e2020043">https://doi.org/10.37705/TechTrans/e2020043
Đặng T-H., Nguyễn X-H., Chou C-L., Chen B-H. Preparation of cancrinite-type zeolite from diatomaceous earth as transesterification catalysts for biodiesel production. Renew Energy 2021:174:347–358. https://doi.org/10.1016/j.renene.2021.04.068">https://doi.org/10.1016/j.renene.2021.04.068
Simbi I., Osagie Aigbe U., Oyekanmi Oyekola O., Adelaja Osibote O. Chemical and quality performance of biodiesel and petrol blends. Energy Convers Manag X 2022:15:100256. https://doi.org/10.1016/j.ecmx.2022.100256">https://doi.org/10.1016/j.ecmx.2022.100256
Sakthivel R., Ramesh K., Purnachandran R., Mohamed Shameer P. A review on the properties, performance and emission aspects of the third generation biodiesels. Renew Sustain Energy Rev 2018:82(P3):2970–2992. https://doi.org/10.1016/j.rser.2017.10.037">https://doi.org/10.1016/j.rser.2017.10.037
Rizwanul Fattah I. M., Ong H. C., Mahlia T. M. I., Mofijur M., Silitonga A. S., Rahman S. M. A., Ahmad A. State of the Art of Catalysts for Biodiesel Production. Front Energy Res 2020:8. https://doi.org/10.3389/fenrg.2020.00101">https://doi.org/10.3389/fenrg.2020.00101
Aleman-Ramirez J. L., Okoye P. U., Torres-Arellano S., Paraguay-Delgado F., Mejía-López M., Moreira J., Sebastian P. J. Development of reusable composite eggshell-moringa leaf catalyst for biodiesel production. Fuel 2022:324(PB):124601. https://doi.org/10.1016/j.fuel.2022.124601">https://doi.org/10.1016/j.fuel.2022.124601
Doyle A. M., Albayati T. M., Abbas A. S., Alismaeel Z. T. Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin. Renew Energy 2016:97:19–23. https://doi.org/10.1016/j.renene.2016.05.067">https://doi.org/10.1016/j.renene.2016.05.067
Wdowin M., Franus M., Panek R., Badura L., Franus W. The conversion technology of fly ash into zeolites. Clean Technol Environ Policy 2014:16:1217–1223. https://doi.org/10.1007/s10098-014-0719-6">https://doi.org/10.1007/s10098-014-0719-6
Panek R., Madej J., Bandura L., Słowik G. Recycling of Waste Solution after Hydrothermal Conversion of Fly Ash on a Semi-Technical Scale for Zeolite Synthesis. Materials (Basel) 2021:14(6):1413. https://doi.org/10.3390/ma14061413">https://doi.org/10.3390/ma14061413
Grabias-Blicharz E., Panek R., Franus M., Franus W. Mechanochemically Assisted Coal Fly Ash Conversion into Zeolite. Materials (Basel) 2022:15(20):7174. https://doi.org/10.3390/ma15207174">https://doi.org/10.3390/ma15207174
Jamil T. S., Youssef H. F. Microwave synthesis of zeolites from Egyptian kaolin: Evaluation of heavy metals removal. Sep Sci Technol 2016:51(18):2876–2886. https://doi.org/10.1080/01496395.2016.1229337">https://doi.org/10.1080/01496395.2016.1229337
Hegazy E. Z., El Maksod I. H. A., El Enin R. M. M. A. Preparation and characterization of Ti and V modified analcime from local kaolin. Appl Clay Sci 2010:49(3):149–155. https://doi.org/10.1016/j.clay.2010.04.019">https://doi.org/10.1016/j.clay.2010.04.019
Bandura L., Panek R., Madej J., Franus W. Synthesis of zeolite-carbon composites using high-carbon fly ash and their adsorption abilities towards petroleum substances. Fuel 2021:283:119173. https://doi.org/10.1016/j.fuel.2020.119173">https://doi.org/10.1016/j.fuel.2020.119173
Zinatlou Ajabshir S., Gucuyener C., Vivacqua V., Gobby D., Stitt H., Barletta D., et al. Flow behaviour of zeolite powders at high process temperatures. Powder Technol 2022:409:117818. https://doi.org/10.1016/j.powtec.2022.117818">https://doi.org/10.1016/j.powtec.2022.117818
Zhang X., Tang D., Zhang M., Yang R. Synthesis of NaX zeolite: Influence of crystallization time, temperature and batch molar ratio SiO2/Al2O3 on the particulate properties of zeolite crystals. Powder Technol 2013:235:322–8. https://doi.org/10.1016/j.powtec.2012.10.046">https://doi.org/10.1016/j.powtec.2012.10.046
Purandaradas A., Silambarasan T., Murugan K., Babujanarthanam R., Gandhi A. D., Dhandapani K. V., Anbumani D., Kavitha P. Development and quantification of biodiesel production from chicken feather meal as a cost-effective feedstock by using green technology. Biochem Biophys Reports 2018:14:133–139. https://doi.org/10.1016/j.bbrep.2018.04.012">https://doi.org/10.1016/j.bbrep.2018.04.012
Primo A., Garcia H. Zeolites as catalysts in oil refining. Chem Soc Rev 2014:22:7548–7561. https://doi.org/10.1039/C3CS60394F">https://doi.org/10.1039/C3CS60394F
Blanco C., González F., Pesquera C., Benito I., Mendioroz S., Pajares J. A. Differences Between One Aluminic Palygorskite and Another Magnesic by Infrared Spectroscopy. Spectrosc Lett 1989:22(6):659–673. https://doi.org/10.1080/00387018908053926">https://doi.org/10.1080/00387018908053926
Kwakye-Awuah B., Radecka I., Kenward M. A., Williams C. D. Production of silver-doped analcime by isomorphous substitution technique. J Chem Technol Biotechnol 2008:83(9):1255–1260. https://doi.org/10.1002/jctb.1938">https://doi.org/10.1002/jctb.1938
Liu X., Wang C., Zhou J., Liu C., Liu Z., Shi J., Wang Y., Teng J., Xie Z. Molecular transport in zeolite catalysts: depicting an integrated picture from macroscopic to microscopic scales. Chem Soc Rev 2022:51(19):8174–8200. https://doi.org/10.1039/D2CS00079B">https://doi.org/10.1039/D2CS00079B
Cuautli C., Romero-Ibarra I., Vazquez-Arenas J., Galvan M. Determination of active sites on Na2SiO3 and Li2SiO3 catalysts for methanol dissociation and methoxide stabilization concerning biodiesel production. Fuel 2021:298:120840. https://doi.org/10.1016/j.fuel.2021.120840">https://doi.org/10.1016/j.fuel.2021.120840
Kouzu M., Kasuno T., Tajika M., Sugimoto Y., Yamanaka S., Hidaka J. Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel 2008:87(12):2798–28806. https://doi.org/10.1016/j.fuel.2007.10.019">https://doi.org/10.1016/j.fuel.2007.10.019
Al-Jammal N., Al-Hamamre Z., Alnaief M. Manufacturing of zeolite based catalyst from zeolite tuft for biodiesel production from waste sunflower oil. Renew Energy 2016:93:449–459. https://doi.org/10.1016/j.renene.2016.03.018">https://doi.org/10.1016/j.renene.2016.03.018
Fereidooni L., Abbaspourrad A., Enayati M. Electrolytic transesterification of waste frying oil using Na+/zeolite–chitosan biocomposite for biodiesel production. Waste Manag 2021:127:48–62. https://doi.org/10.1016/j.wasman.2021.04.020">https://doi.org/10.1016/j.wasman.2021.04.020
Enweremadu C., Samuel O., Rutto H. Experimental Studies and Theoretical Modelling of Diesel Engine Running on Biodiesels from South African Sunflower and Canola Oils Environ Clim Technol 2022:26:630–647. https://doi.org/10.2478/rtuect-2022-0048">https://doi.org/10.2478/rtuect-2022-0048
Kiprono J, Rutto H, Seodigeng T. Production of Biodiesel Using Phosphate Rock as a Heterogeneous Catalyst. An Optimized Process Using Surface Response Methodology Environ Clim Technol 2022:26:822–835. https://doi.org/10.2478/rtuect-2022-0062">https://doi.org/10.2478/rtuect-2022-0062
Rashid A.B, Kader M.F. Performance Analysis of An Automated Biodiesel Processor Environ Clim Technol 2022:26:84–97. https://doi.org/10.2478/rtuect-2022-0008">https://doi.org/10.2478/rtuect-2022-0008