Have a personal or library account? Click to login
Assessing the Sustainability Impact of Improving Secondary Steel Production: Lessons Learned from an Italian Plant Cover

Assessing the Sustainability Impact of Improving Secondary Steel Production: Lessons Learned from an Italian Plant

Open Access
|Feb 2024

References

  1. International Energy Agency. Emissions Measurement and Data Collection for a Net Zero Steel Industry. Paris: IEA, 2023.
  2. Stefana E., <em>et al.</em> A Review of Energy and Environmental Management Practices in Cast Iron Foundries to Increase Sustainability. <em>Sustainability (Switzerland)</em> 2019:11(24):7245. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/su11247245" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/su11247245</a>">https://doi.org/10.3390/su11247245</ext-link>
  3. Johansson M. T., Söderström M. Options for the Swedish steel industry – Energy efficiency measures and fuel conversion. <em>Energy</em> 2011:36(1):191–198. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.energy.2010.10.053" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.energy.2010.10.053</a>">https://doi.org/10.1016/j.energy.2010.10.053</ext-link>
  4. Karakaya E., Nuur C., Assbring L. Potential transitions in the iron and steel industry in Sweden: Towards a hydrogen-based future? <em>Journal of Cleaner Production</em> 2018:195:651–663. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jclepro.2018.05.142" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jclepro.2018.05.142</a>">https://doi.org/10.1016/j.jclepro.2018.05.142</ext-link>
  5. Peters K., Malfa E., Colla V. The European steel technology platform’s strategic research agenda: a further step for the steel as backbone of EU resource and energy intense industry sustainability. <em>La Metallurgia Italiana</em> 2019:5:5–17.
  6. Tomasoni G., <em>et al.</em> Technological innovation as a driver of sustainability in steel production. <em>Proceedings of the 27</em><sup>th</sup> <em>Summer School Francesco Turco</em> 2022.
  7. Stefana E., <em>et al.</em> Management practices to conduct ladle treatment processes in the steel industry: a systematic literature review. <em>Proceedings of the 26th Summer School Francesco Turco</em>, 2021.
  8. Horst D. J., de Andrade Júnior P. P. Sustainability of the Steel Industry: A Systematic Review. <em>Biointerface Research in Applied Chemistry</em> 2023:13(6):525.
  9. Suer J., Traverso M., Jäger N. Review of Life Cycle Assessments for Steel and Environmental Analysis of Future Steel Production Scenarios. <em>Sustainability (Switzerland)</em> 2022:14(21):14131. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/su142114131" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/su142114131</a>">https://doi.org/10.3390/su142114131</ext-link>
  10. Sabogal-De La Pava L. M., <em>et al.</em> Sustainable supply chain design considering indicators of value creation. <em>Computers &amp; Industrial Engineering</em> 2021:157:107249. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.cie.2021.107294" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cie.2021.107294</a>">https://doi.org/10.1016/j.cie.2021.107294</ext-link>
  11. Borji M. K., Sayadi A. R., Ehsan N. A Novel Sustainable Multi-Objective Optimization Model for Steel Supply Chain Design Considering Technical and Managerial Issues: A Case Study. <em>Journal of Mining and Environment</em> 2023:14:295–319. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.22044/jme.2023.12556.2280" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.22044/jme.2023.12556.2280</a>">https://doi.org/10.22044/jme.2023.12556.2280</ext-link>
  12. Patel N., Blumberga D. Insights of Bioeconomy: Biopolymer Evaluation Based on Sustainability Criteria. <em>Environmental and Climate Technologies</em> 2023:27(1):323–338. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2023-0025" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2023-0025</a>">https://doi.org/10.2478/rtuect-2023-0025</ext-link>
  13. Ruiz M., Diaz F. Life Cycle Sustainability Evaluation of Potential Bioenergy Development for Landfills in Colombia. <em>Environmental and Climate Technologies</em>. 2022:26(1):454–469. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2022-0035" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2022-0035</a>">https://doi.org/10.2478/rtuect-2022-0035</ext-link>
  14. Collotta M., <em>et al.</em> Life Cycle Analysis of the Production of Biodiesel from Microalgae. Life Cycle Assessment of Energy Systems and Sustainable Energy Technologies. Green Energy and Technology. Cham: Springer, 2019.
  15. Tukulis A., <em>et al.</em> Ex Post Evaluation of Large Electricity Consumer Policy Measures. <em>Environmental and Climate Technologies</em> 2022:26(1):12–24. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2022-0002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2022-0002</a>">https://doi.org/10.2478/rtuect-2022-0002</ext-link>
  16. Allena-Ozolina S., <em>et al.</em> Passenger Transport Shift to Green Mobility – Assessment Using TIMES Model. <em>Environmental and Climate Technologies</em> 2022:26(1):341–356. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2022-0026" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2022-0026</a>">https://doi.org/10.2478/rtuect-2022-0026</ext-link>
  17. Sommet J. Sustainable Development in Estonian Mining. <em>Environmental and Climate Technologies</em> 2013:11(2013):34–40. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2478/rtuect-2013-0005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2478/rtuect-2013-0005</a>">https://doi.org/10.2478/rtuect-2013-0005</ext-link>
  18. ISO 22400-1:2014, Automation systems and integration – Key performance indicators (KPIs) for manufacturing operations management – Part 1: Overview, concepts and terminology. Geneva: ISO, 2014.
  19. ISO 14040:2006, Environmental management – Life cycle assessment – Principles and framework. Geneva: ISO, 2006.
  20. ISO 14044:2006, Environmental management – Life cycle assessment – Requirements and guidelines. Geneva: ISO, 2006.
  21. Saaty T. L. The Analytic Hierarchy Process. New York: McGraw-Hill, 1980.
  22. ISO 16120-2:2017, Non-alloy steel wire rod for conversion to wire – Part 2: Specific requirements for general purpose wire rod. Geneva: ISO, 2017.
  23. ISO 12100:2010, Safety of machinery – General principles for design – Risk assessment and risk reduction. Geneva: ISO, 2010.
  24. Rossi D., <em>et al.</em> A multicriteria ergonomic and performance methodology for evaluating alternatives in “manuable” material handling. <em>International Journal of Industrial Ergonomics</em> 2013:43(4):314–327. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.ergon.2013.04.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ergon.2013.04.009</a>">https://doi.org/10.1016/j.ergon.2013.04.009</ext-link>
  25. Stefana E., <em>et al.</em> Composite Indicators to Measure Quality of Working Life in Europe: A Systematic Review. <em>Social Indicators Research</em> 2021:157:1047–1078. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s11205-021-02688-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11205-021-02688-6</a>">https://doi.org/10.1007/s11205-021-02688-6</ext-link>
  26. Super Decision CDF [Online]. [Accessed 15.04.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.superdecisions.com">https://www.superdecisions.com</ext-link>
  27. EN 15221-4:2011, Facility Management – Part 4: Taxonomy, Classification and Structures in Facility Management. Newark, iTeh, 2011.
  28. ISO 9001:2015, Quality management systems – Requirements. Geneva: ISO, 2015.
DOI: https://doi.org/10.2478/rtuect-2024-0004 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 32 - 44
Submitted on: Jul 28, 2023
Accepted on: Nov 9, 2023
Published on: Feb 10, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2024 Giuseppe Tomasoni, Filippo Marciano, Elena Stefana, Paola Cocca, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.