Have a personal or library account? Click to login
Supercritical CO2 Extraction of Fish Roe Cover
Open Access
|Feb 2024

References

  1. PEW, Goldburg R. Scientists Find That 30% of Global Fish Catch Is Unreported [Online]. [Accessed 18.04.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.pewtrusts.org/en/research-and-analysis/articles/2016/01/19/scientists-find-that-30-percent-of-global-fish-catch-is-unreported">https://www.pewtrusts.org/en/research-and-analysis/articles/2016/01/19/scientists-find-that-30-percent-of-global-fish-catch-is-unreported</ext-link>
  2. Food and Agriculture Organization. The State of World Fisheries and Aquaculture 2020. Rome: FAO, 2022.
  3. Vázquez J. A., <em>et al.</em> Production of Valuable Compounds and Bioactive Metabolites from By-Products of Fish Discards Using Chemical Processing, Enzymatic Hydrolysis, and Bacterial Fermentation. <em>Mar. Drugs</em> 2019:17(3):139. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/MD17030139" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/MD17030139</a>">https://doi.org/10.3390/MD17030139</ext-link>
  4. Tanaka Y., Sakaki I., Ohkubo T. Extraction of Phospholipids from Salmon Roe with Supercritical Carbon Dioxide and an Entrainer. <em>J. Oleo Sci.</em> 2004:53(9):417–424. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.5650/jos.53.417" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5650/jos.53.417</a>">https://doi.org/10.5650/jos.53.417</ext-link>
  5. Kuvendziev S., <em>et al.</em> Supercritical fluid extraction of fish oil from common carp (<em>Cyprinus carpio</em> L.) tissues. <em>J. Supercrit. Fluids</em> 2018:133:528–534. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.supflu.2017.11.027" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.supflu.2017.11.027</a>">https://doi.org/10.1016/j.supflu.2017.11.027</ext-link>
  6. Binsi P. K., <em>et al.</em> Structural, functional and in vitro digestion characteristics of spray dried fish roe powder stabilised with gum arabic. <em>Food Chem.</em> 2017:221:1698–1708. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.FOODCHEM.2016.10.116" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.FOODCHEM.2016.10.116</a>">https://doi.org/10.1016/J.FOODCHEM.2016.10.116</ext-link>
  7. Rubio-Rodríguez N., <em>et al.</em> Supercritical fluid extraction of fish oil from fish by-products: A comparison with other extraction methods. <em>J. Food Eng.</em> 2012:109(2):238–248. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jfoodeng.2011.10.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jfoodeng.2011.10.011</a>">https://doi.org/10.1016/j.jfoodeng.2011.10.011</ext-link>
  8. Ferdosh S., <em>et al.</em> Quality of Tuna Fish Oils Extracted from Processing the By-Products of Three Species of Neritic Tuna Using Supercritical Carbon Dioxide. <em>J. Food Process. Preserv.</em> 2015:39(4):432–441. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/jfpp.12248" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/jfpp.12248</a>">https://doi.org/10.1111/jfpp.12248</ext-link>
  9. Tzanavaras D., <em>et al.</em> Aqueous Extracts of Fish Roe as a Source of Several Bioactive Compounds. <em>Sep.</em> 2022:9(8):210. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/SEPARATIONS9080210" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/SEPARATIONS9080210</a>">https://doi.org/10.3390/SEPARATIONS9080210</ext-link>
  10. Hernández-Ruiz K. L., <em>et al.</em> Hydroxyapatite recovery from fish byproducts for biomedical applications. <em>Sustain. Chem. Pharm.</em> 2022:28:100726. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.SCP.2022.100726" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.SCP.2022.100726</a>">https://doi.org/10.1016/J.SCP.2022.100726</ext-link>
  11. Adeoti I. A., Hawboldt K. A review of lipid extraction from fish processing by-product for use as a biofuel. <em>Biom. Bioen.</em> 2014:63:330–340. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.BIOMBIOE.2014.02.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.BIOMBIOE.2014.02.011</a>">https://doi.org/10.1016/J.BIOMBIOE.2014.02.011</ext-link>
  12. Atef M., Mahdi Ojagh S. Health benefits and food applications of bioactive compounds from fish byproducts: A review. <em>J. Funct. Foods</em> 2017:35:673–681. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.JFF.2017.06.034" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.JFF.2017.06.034</a>">https://doi.org/10.1016/J.JFF.2017.06.034</ext-link>
  13. Sahena F., <em>et al.</em> PUFAs in Fish: Extraction, Fractionation, Importance in Health. <em>Compr. Rev. Food Sci. Food Saf.</em> 2009:8(2):59–74. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/J.1541-4337.2009.00069.X" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/J.1541-4337.2009.00069.X</a>">https://doi.org/10.1111/J.1541-4337.2009.00069.X</ext-link>
  14. Science Direct. Clarias gariepinus. An overview [Online]. [Accessed 18.04.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/clarias-gariepinus">https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/clarias-gariepinus</ext-link>
  15. Sarker M. Z. I., <em>et al.</em> Optimization of supercritical CO<sub>2</sub> extraction of fish oil from viscera of African Catfish (<em>Clarias gariepinus</em>). <em>Int. J. Mol. Sci.</em> 2012:13(9):11312–11322. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ijms130911312" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ijms130911312</a>">https://doi.org/10.3390/ijms130911312</ext-link>
  16. Raventós M., Duarte S., Alarcón R. Application and Possibilities of Supercritical CO<sub>2</sub> Extraction in Food Processing Industry: An Overview. <em>Food Sci. Technol. Int.</em> 2002:8(5):269–284. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1106/108201302029451" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1106/108201302029451</a>">https://doi.org/10.1106/108201302029451</ext-link>
  17. Tulej W., Głowacki S. Modeling of the Drying Process of Apple Pomace. <em>Appl. Sci.</em> 2022:12(3):1434. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/app12031434" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/app12031434</a>">https://doi.org/10.3390/app12031434</ext-link>
  18. Nowak D., Jakubczyk E. The Freeze-Drying of Foods. The Characteristic of the Process Course and the Effect of Its Parameters on the Physical Properties of Food Materials. <em>Foods</em> 2020:9(10). <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/FOODS9101488" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/FOODS9101488</a>">https://doi.org/10.3390/FOODS9101488</ext-link>
  19. Dumay J., Barthomeuf C., Berge J. P. How enzymes may be helpful for upgrading fish by-products: Enhancement of fat extraction. <em>J. Aquat. Food Prod. Technol.</em> 2004:13(2):69–84. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1300/J030v13n02_07" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1300/J030v13n02_07</a>">https://doi.org/10.1300/J030v13n02_07</ext-link>
  20. Guedes M., <em>et al.</em> Aqueous Extracts of Fish Roe as a Source of Several Bioactive Compounds. <em>Separ.</em> 2022:9(8):210. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/separations9080210" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/separations9080210</a>">https://doi.org/10.3390/separations9080210</ext-link>
  21. GGCPLC. Methyl Ester [Online]. [Accessed 18.04.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.ggcplc.com/en/businesses/methylester">https://www.ggcplc.com/en/businesses/methylester</ext-link>
  22. Thermo Fischer Scientific. Methyl palmitate, 97% [Online]. [Accessed 29.04.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.alfa.com/en/catalog/L05509/">https://www.alfa.com/en/catalog/L05509/</ext-link>
  23. Thermo Fischer Scientific. Methyl stearate, 99% [Online]. [Accessed 18.04.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.thermofisher.com/order/catalog/product/A13265.06">https://www.thermofisher.com/order/catalog/product/A13265.06</ext-link>
  24. “Showing Compound Methyl linoleate (FDB012761) - FooDB.” <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://foodb.ca/compounds/FDB012761">https://foodb.ca/compounds/FDB012761</ext-link> (accessed Apr. 18, 2023).
  25. Tallima H., El Ridi R. Arachidonic acid: Physiological roles and potential health benefits – A review. <em>J. Adv. Res.</em> 2018:11:33. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.JARE.2017.11.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.JARE.2017.11.004</a>">https://doi.org/10.1016/J.JARE.2017.11.004</ext-link>
  26. Sigma Aldrich. Methyl linolenate [online]. [Accessed 18.04.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.sigmaaldrich.com/LV/en/product/sigma/l2626">https://www.sigmaaldrich.com/LV/en/product/sigma/l2626</ext-link>
  27. LGC Standards. Methyl Eicosapentaenoate [Online]. [Accessed 18.04.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.trc-canada.com/product-detail/?M304160">https://www.trc-canada.com/product-detail/?M304160</ext-link>
DOI: https://doi.org/10.2478/rtuect-2024-0002 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 12 - 20
Submitted on: Apr 18, 2023
Accepted on: Dec 11, 2023
Published on: Feb 10, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2024 Ilze Luksta, Taras Mika, Kriss Spalvins, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.