Have a personal or library account? Click to login
Analysing Metal Melting Methods for Green Transformation of Scrap Metal: Case Study of Latvia using MCDA and SWOT Analysis Cover

Analysing Metal Melting Methods for Green Transformation of Scrap Metal: Case Study of Latvia using MCDA and SWOT Analysis

Open Access
|Feb 2024

References

  1. Nicholas S., Basirat S. New From Old: The Global Potential for More Scrap Steel Recycling. Lakewood: IEEFA, 2021.
  2. Statista. World crude steel production from 2012 to 2021 [Online]. [Accessed 18.02.2023]. Available: https://www.statista.com/statistics/267264/world-crude-steel-production
  3. de Abreu G., et al. Iron and Steel Technology Roadmap. Towards more sustainable steelmaking. Paris: IEA, 2020.
  4. IIGCC. Initiative supported by investors representing USD $55 trillion sets decarbonisation expectations for steel industry in line with IEA 2050 scenario 2021 [Online]. [Accessed 10.02.2023]. Available: https://www.iigcc.org/news/initiative-supported-by-investors-representing-usd-55-trillion-set-decarbonisation-expectations-for-steel-industry-in-line-with-iea-2050-scenario
  5. Morecamble Metals. Defining all the Different Types of Scrap Metal [Online]/ [Accessed 12.02.2023]. Available: https://www.morecambemetals.co.uk/defining-home-and-prompt-scrap-industrial-scrap-and-obsolete-scrap
  6. Kolbeinsen L. The beginning and the end of the aluminium value chain. Mater. Tech. 2020:108(5–6):1–22. https://doi.org/10.1051/MATTECH/2021008
  7. Ruth M. Steel Production and Energy. Encycl. Energy 2004:695–706. https://doi.org/10.1016/B0-12-176480-X/00371-5
  8. Raabe D., et al. Making sustainable aluminum by recycling scrap: The science of “dirty” alloys. Prog. Mater. Sci. 2022:128:100947. https://doi.org/10.1016/J.PMATSCI.2022.100947
  9. Allwood J. M., Cullen J. M., Milford R. L. Options for achieving a 50% cut in industrial carbon emissions by 2050. Environ. Sci. Technol. 2010:44(6):1888–1894. https://doi.org/10.1021/es902909k
  10. Brooks L., et al. Ferrous and non-ferrous recycling: Challenges and potential technology solutions. Waste Manag. 2019:85:519–528. https://doi.org/10.1016/J.WASMAN.2018.12.043
  11. Fraser Valley Scrap Metal Recycling. Reducing greenhouse gas emissions one scrap metal at a time | Get fair prices for your metal items. 2022 [Online]. [Accessed 11.02.2023]. Available: https://fvmr.ca/reducing-greenhouse-gasemissions-one-scrap-metal-at-a-time-get-fair-prices-for-your-metal-items
  12. RMG. Environmental Benefits of Recycling Scrap Metal. 2021 [Online]. [Accessed 02.02.2023]. Available: https://roanemetals.com/scrap-metal-recycling-environmental-benefits
  13. World Steel Association. Scrap use in the steel industry. Brussels: WSA, 2021.
  14. EuRIC AISBL. Metal Recycling Factsheet. Brussels: EuRIC aisbl, 2015.
  15. Sahoo M., et al. Role of Scrap Recycling for CO2 Emission Reduction in Steel Plant: A Model Based Approach. Steel Res. Int. 2019:90(8):1900034. https://doi.org/10.1002/SRIN.201900034
  16. Basson E. 2020 World Steel in Figures. Brussels: WSA, 2020.
  17. Eurostat. Generation of metal waste in Latvia. Statistics. 2022 [Online]. [Accessed 18.02.2023]. Available: https://ec.europa.eu/eurostat/databrowser/view/ENV_WASGEN__custom_5001386/default/table?lang=en
  18. European Union. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. Off. J. Eur. Union 2008:L312/3.
  19. VARAM. Atkritumu apsaimniekošanas valsts plānam 2021.–2028.gadam. 3. Pielikums (Waste management plant State plan for 2021-2028. Annex 3). Riga: VARAM, 2021. (in Latvian)
  20. Cabinet of Ministers. Regulations Regarding Separate Collection of Waste, Preparation of Waste for Re-use, Recycling of Waste, and Material Recovery. Latv. Vestnieks 2021:209.
  21. Tolmets. Kur nodot metalluznus [Online]. [Accessed 18.02.2023]. Available: https://tolmets.lv/pienemsanas-punkti.html
  22. Official Statistics Portal. In 2021, industrial production output increased by 6.5 %. Riga: OSP, 2022.
  23. MASOC. Home page – MASOC. [Online]. [Accessed 12.02.2023]. Available: https://www.masoc.lv/en
  24. de Paula do Rosário J. G., et al. A Review on Multi-criteria Decision Analysis in the Life Cycle Assessment of Electricity Generation Systems. World Sustain. Ser. 2020:575–590. https://doi.org/10.1007/978-3-030-26759-9_33
  25. Cusano G., et al. Best Available Techniques (BAT) Reference Document for the Non-Ferrous Metals Industries. Luxembourg: EC, 2017.
  26. Burrows A., et al. Isasmelt at Mufulira-Increased Flexibility on the Zambian Copperbelt. Met. Mater. Process. a Clean Environ. 2014:1:217–226.
  27. Babich A., Senk D. Recent developments in blast furnace iron-making technology. Iron Ore: Mineralogy, Processing and Environmental Sustainability. Cambridge: Woodhead Publishing, 2015:505–547.
  28. StrikoWestofen. The StrikoMelter Plus+ Energy Saving Furnace. 2022 [Online]. [Accessed 19.02.2023]. Available: https://www.strikowestofen.com/en-gb/strikomelter-plus-energy-saving-furnace
  29. White D., et al. Reverberatory and Stack Furnaces. ASH Handbook. Almere: ASM International, 2008:15:160–169.
  30. Kulczycka J., et al. Environmental Impacts of Energy-Efficient Pyrometallurgical Copper Smelting Technologies. J. Ind. Ecol. 2016:20(2):304–316. https://doi.org/10.1111/JIEC.12369
  31. Echterhof T. Review on the Use of Alternative Carbon Sources in EAF Steelmaking. Metals 2021:11(2):222. https://doi.org/10.3390/MET11020222
  32. Demus T., et al. Investigations on the Use of Biogenic Residues as a Substitute For Fossil Coal in The EAF Steelmaking Process. Proc. of the 10 th Eur. Electr. Steelmak. Conf. 2012:10.
  33. Brewster R. Report on the Environmental Benefits of Recycling. Brussels: BIR, 2008.
  34. Sohn H. Y., Olivas-Martinez M. Lead and Zinc Production. Treatise on Process Metallurgy. Elsevier, 2014:3:671–700.
  35. Total Materia Article. Ausmelt Smelting: Part Three. 2022 [Online]. [Accessed 19.02.2023]. Available: https://www.totalmateria.com/page.aspx?ID=CheckArticle&site=ktn&NM=270
  36. Alexander C., et al. Comparison of environmental performance of modern copper smelting technologies. Clean. Environ. Syst. 2021:3:100052. https://doi.org/10.1016/J.CESYS.2021.100052
  37. Arthur P., Edwards J. ISASMELT - A Quiet Revolution. Proc. EMC 2003, 2003.
  38. BOLIDEN. Metals for the sustainable society. Narva: Boliden, 2018.
  39. Americam Iron and Steel Institute. Electric Arc Furnace Steelmaking. Washington: AISI, 2008.
  40. Norgate T. E., Jahanshahi S., Rankin W. J. Alternative Routes to Stainless Steel-A Life Cycle Approach. Proc. Tenth Int. Ferroalloys Congr. 2004:1.
  41. Carpenter A. CO2 abatement in the iron and steel industry. London: IEA Clean Coal Centre, 2012.
  42. Moya J. A., et al. Energy Efficiency and GHG Emissions: Prospective Scenarios for the Aluminium Industry. Luxembourg: Publications Office of the European Union, 2015. https://doi.org/10.2790/9500
  43. Kongoli F., Arthur P. S. ISASMELT - 6,000,000 TPA and Rising. Sohn Int. Symp. Adv. Process. Met. Mater. 2006:1–16.
  44. Siegmund A. Modern Applied Technologies for Primary Lead Smelting at the Beginning of the 21 Century. Mater. Sci. 2013.
  45. Simonov Yu.-N., Belova S.-A., Simonov M.-Yu. Metallurgicheskie technologii (Metallurgical technologies). Perm: PNIPU, 2012. (in Russian)
  46. Pan D., et al. A review on lead slag generation, characteristics, and utilization. Resour. Conserv. Recycl. 2019:146:140–155. https://doi.org/10.1016/J.RESCONREC.2019.03.036
  47. Hoffman C., Van Hoey M., Zeumer B. Decarbonization challenge for steel. New York: McKinsey&Company, 2020.
  48. Williamson IR. Industrial Application of Temperature Measurement. 2022 [Online]. [Accessed 19.02.2023]. Available: https://www.williamsonir.com/blog/industrial-application-of-temperature-measurement/
  49. Pérez K., et al. Environmental, economic and technological factors affecting Chilean copper smelters – A critical review. J. Mater. Res. Technol. 2021:15:213–225. https://doi.org/10.1016/J.JMRT.2021.08.007
  50. Zhou H., et al. Mineralogical and morphological factors affecting the separation of copper and arsenic in flash copper smelting slag flotation beneficiation process. J. Hazard. Mater. 2021:401:123293. https://doi.org/10.1016/J.JHAZMAT.2020.123293
  51. Morris A. E., Wadsley M. Metal Extraction: Phase Stability Diagrams. Encycl. Mater. Sci. Technol. 2001:5362–5377. https://doi.org/10.1016/B0-08-043152-6/00936-0
  52. Hayati M., Mahdevari S., Barani K. An improved MADM-based SWOT analysis for strategic planning in dimension stones industry. Resour. Policy 2023:80:103287. https://doi.org/10.1016/J.RESOURPOL.2022.103287
  53. VVD. AB atļaujas (AB Permitions) [Online]. [Accessed 13.01.2023]. Available: https://registri.vvd.gov.lv/izsniegtasatlaujas-un-licences/a-un-b-atlaujas/
  54. Dock J., Kienberger T. Techno-economic case study on Oxyfuel technology implementation in EAF steel mills – Concepts for waste heat recovery and carbon dioxide utilization. Clean. Eng. Technol. 2022:9:100525. https://doi.org/10.1016/J.CLET.2022.100525
  55. Andonovski G., Tomažic S. Comparison of data-based models for prediction and optimization of energy consumption in electric arc furnace (EAF). IFAC-PapersOnLine 2022:55(20):373–378. https://doi.org/10.1016/J.IFACOL.2022.09.123
  56. Kim J., et al. Optimized rotary hearth furnace utilization with blast furnace and electric arc furnace: Techno-economics, CO2 reduction. Fuel Process. Technol. 2022:237:107450. https://doi.org/10.1016/J.FUPROC.2022.107450
  57. Ceramic Industry. Understanding the benefits of Electric Arc Furnace technology. Washington: CI, 2015.
  58. Tian B., et al. Effect of hot metal charging on economic and environmental indices of electric arc furnace steelmaking in China. J. Clean. Prod. 2022:379:134597. https://doi.org/10.1016/J.JCLEPRO.2022.134597
  59. Xia Z., et al. The CO2 reduction potential for the oxygen blast furnace with CO2 capture and storage under hydrogen-enriched conditions. Int. J. Greenh. Gas Control 2022:121:103793. https://doi.org/10.1016/J.IJGGC.2022.103793
  60. Suopajärvi H., Pongrácz E., Fabritius T. Bioreducer use in Finnish blast furnace ironmaking – Analysis of CO2 emission reduction potential and mitigation cost. Appl. Energy 2014:124:82–93. https://doi.org/10.1016/J.APENERGY.2014.03.008
  61. Total Materia Article. The Queneau-Schuhmann-Lurgi (QSL) Process. 2015 [Online]. [Accessed 20.02.2023]. Available: https://www.totalmateria.com/page.aspx?ID=CheckArticle&site=ktn&NM=363
  62. Schlesinger M. E., et al. Bath Matte Smelting: Ausmelt/Isasmelt and Mitsubishi. Extractive Metallurgy of Copper. Elsevier, 2011:155–178.
  63. Metso Outotec. Decarbonization of the Ausmelt process. 2023 [Online]. [Accessed 19.02.2023]. Available: https://www.mogroup.com/insights/blog/mining-and-metals/decarbonization-of-the-ausmelt-process
  64. George J. P., Pramod V. R. SWOT Analysis of Steel Re Rolling Mills (A comparative study of international brand with a local brand). Int. J. Sci. Res. Publ. 2013:3(12).
  65. Iskanius P., Muhos M. Drivers towards agility in the Finnish metal industry. Proc. Int. Conf. Ind. Eng. Syst. Manag. 2007.
  66. ECORYS SCS Group. FWC Sector Competitiveness Studies - Competitiveness of the EU Metalworking and Metal Articles Industries. Rotterdam: ECORYS SCS Group, 2009.
  67. LVGMC. Pollutant Release and Transfer Register [Online]. [Accessed 13.01.2023]. Available: https://prtr.lvgmc.lv/
DOI: https://doi.org/10.2478/rtuect-2024-0001 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 1 - 11
Submitted on: Mar 29, 2023
Accepted on: Oct 9, 2023
Published on: Feb 10, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Viktorija Terjanika, Jelena Pubule, Elina Mihailova, Beate Zlaugotne, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.