Have a personal or library account? Click to login
Analysing Metal Melting Methods for Green Transformation of Scrap Metal: Case Study of Latvia using MCDA and SWOT Analysis Cover

Analysing Metal Melting Methods for Green Transformation of Scrap Metal: Case Study of Latvia using MCDA and SWOT Analysis

Open Access
|Feb 2024

References

  1. Nicholas S., Basirat S. New From Old: The Global Potential for More Scrap Steel Recycling. Lakewood: IEEFA, 2021.
  2. Statista. World crude steel production from 2012 to 2021 [Online]. [Accessed 18.02.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.statista.com/statistics/267264/world-crude-steel-production">https://www.statista.com/statistics/267264/world-crude-steel-production</ext-link>
  3. de Abreu G., <em>et al.</em> Iron and Steel Technology Roadmap. Towards more sustainable steelmaking. Paris: IEA, 2020.
  4. IIGCC. Initiative supported by investors representing USD $55 trillion sets decarbonisation expectations for steel industry in line with IEA 2050 scenario 2021 [Online]. [Accessed 10.02.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.iigcc.org/news/initiative-supported-by-investors-representing-usd-55-trillion-set-decarbonisation-expectations-for-steel-industry-in-line-with-iea-2050-scenario">https://www.iigcc.org/news/initiative-supported-by-investors-representing-usd-55-trillion-set-decarbonisation-expectations-for-steel-industry-in-line-with-iea-2050-scenario</ext-link>
  5. Morecamble Metals. Defining all the Different Types of Scrap Metal [Online]/ [Accessed 12.02.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.morecambemetals.co.uk/defining-home-and-prompt-scrap-industrial-scrap-and-obsolete-scrap">https://www.morecambemetals.co.uk/defining-home-and-prompt-scrap-industrial-scrap-and-obsolete-scrap</ext-link>
  6. Kolbeinsen L. The beginning and the end of the aluminium value chain. <em>Mater. Tech.</em> 2020:108(5–6):1–22. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1051/MATTECH/2021008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1051/MATTECH/2021008</a>">https://doi.org/10.1051/MATTECH/2021008</ext-link>
  7. Ruth M. Steel Production and Energy. <em>Encycl. Energy</em> 2004:695–706. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/B0-12-176480-X/00371-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B0-12-176480-X/00371-5</a>">https://doi.org/10.1016/B0-12-176480-X/00371-5</ext-link>
  8. Raabe D., <em>et al.</em> Making sustainable aluminum by recycling scrap: The science of “dirty” alloys. <em>Prog. Mater. Sci.</em> 2022:128:100947. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.PMATSCI.2022.100947" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.PMATSCI.2022.100947</a>">https://doi.org/10.1016/J.PMATSCI.2022.100947</ext-link>
  9. Allwood J. M., Cullen J. M., Milford R. L. Options for achieving a 50% cut in industrial carbon emissions by 2050. <em>Environ. Sci. Technol.</em> 2010:44(6):1888–1894. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/es902909k" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/es902909k</a>">https://doi.org/10.1021/es902909k</ext-link>
  10. Brooks L., <em>et al.</em> Ferrous and non-ferrous recycling: Challenges and potential technology solutions. <em>Waste Manag.</em> 2019:85:519–528. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.WASMAN.2018.12.043" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.WASMAN.2018.12.043</a>">https://doi.org/10.1016/J.WASMAN.2018.12.043</ext-link>
  11. Fraser Valley Scrap Metal Recycling. Reducing greenhouse gas emissions one scrap metal at a time | Get fair prices for your metal items. 2022 [Online]. [Accessed 11.02.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://fvmr.ca/reducing-greenhouse-gasemissions-one-scrap-metal-at-a-time-get-fair-prices-for-your-metal-items">https://fvmr.ca/reducing-greenhouse-gasemissions-one-scrap-metal-at-a-time-get-fair-prices-for-your-metal-items</ext-link>
  12. RMG. Environmental Benefits of Recycling Scrap Metal. 2021 [Online]. [Accessed 02.02.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://roanemetals.com/scrap-metal-recycling-environmental-benefits">https://roanemetals.com/scrap-metal-recycling-environmental-benefits</ext-link>
  13. World Steel Association. Scrap use in the steel industry. Brussels: WSA, 2021.
  14. EuRIC AISBL. Metal Recycling Factsheet. Brussels: EuRIC aisbl, 2015.
  15. Sahoo M., <em>et al.</em> Role of Scrap Recycling for CO2 Emission Reduction in Steel Plant: A Model Based Approach. <em>Steel Res. Int.</em> 2019:90(8):1900034. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/SRIN.201900034" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/SRIN.201900034</a>">https://doi.org/10.1002/SRIN.201900034</ext-link>
  16. Basson E. 2020 World Steel in Figures. Brussels: WSA, 2020.
  17. Eurostat. Generation of metal waste in Latvia. Statistics. 2022 [Online]. [Accessed 18.02.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://ec.europa.eu/eurostat/databrowser/view/ENV_WASGEN__custom_5001386/default/table?lang=en">https://ec.europa.eu/eurostat/databrowser/view/ENV_WASGEN__custom_5001386/default/table?lang=en</ext-link>
  18. European Union. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. <em>Off. J. Eur. Union</em> 2008:L312/3.
  19. VARAM. Atkritumu apsaimniekošanas valsts plānam 2021.–2028.gadam. 3. Pielikums (Waste management plant State plan for 2021-2028. Annex 3). Riga: VARAM, 2021. (in Latvian)
  20. Cabinet of Ministers. Regulations Regarding Separate Collection of Waste, Preparation of Waste for Re-use, Recycling of Waste, and Material Recovery. <em>Latv. Vestnieks</em> 2021:209.
  21. Tolmets. Kur nodot metalluznus [Online]. [Accessed 18.02.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://tolmets.lv/pienemsanas-punkti.html">https://tolmets.lv/pienemsanas-punkti.html</ext-link>
  22. Official Statistics Portal. In 2021, industrial production output increased by 6.5 %. Riga: OSP, 2022.
  23. MASOC. Home page – MASOC. [Online]. [Accessed 12.02.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.masoc.lv/en">https://www.masoc.lv/en</ext-link>
  24. de Paula do Rosário J. G., <em>et al.</em> A Review on Multi-criteria Decision Analysis in the Life Cycle Assessment of Electricity Generation Systems. <em>World Sustain. Ser.</em> 2020:575–590. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/978-3-030-26759-9_33" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-3-030-26759-9_33</a>">https://doi.org/10.1007/978-3-030-26759-9_33</ext-link>
  25. Cusano G., <em>et al.</em> Best Available Techniques (BAT) Reference Document for the Non-Ferrous Metals Industries. Luxembourg: EC, 2017.
  26. Burrows A., <em>et al.</em> Isasmelt at Mufulira-Increased Flexibility on the Zambian Copperbelt. <em>Met. Mater. Process. a Clean Environ.</em> 2014:1:217–226.
  27. Babich A., Senk D. Recent developments in blast furnace iron-making technology. Iron Ore: Mineralogy, Processing and Environmental Sustainability. Cambridge: Woodhead Publishing, 2015:505–547.
  28. StrikoWestofen. The StrikoMelter Plus+ Energy Saving Furnace. 2022 [Online]. [Accessed 19.02.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.strikowestofen.com/en-gb/strikomelter-plus-energy-saving-furnace">https://www.strikowestofen.com/en-gb/strikomelter-plus-energy-saving-furnace</ext-link>
  29. White D., <em>et al.</em> Reverberatory and Stack Furnaces. ASH Handbook. Almere: ASM International, 2008:15:160–169.
  30. Kulczycka J., <em>et al.</em> Environmental Impacts of Energy-Efficient Pyrometallurgical Copper Smelting Technologies. <em>J. Ind. Ecol.</em> 2016:20(2):304–316. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/JIEC.12369" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/JIEC.12369</a>">https://doi.org/10.1111/JIEC.12369</ext-link>
  31. Echterhof T. Review on the Use of Alternative Carbon Sources in EAF Steelmaking. <em>Metals</em> 2021:11(2):222. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/MET11020222" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/MET11020222</a>">https://doi.org/10.3390/MET11020222</ext-link>
  32. Demus T., <em>et al.</em> Investigations on the Use of Biogenic Residues as a Substitute For Fossil Coal in The EAF Steelmaking Process. <em>Proc. of the 10 th Eur. Electr. Steelmak. Conf.</em> 2012:10.
  33. Brewster R. Report on the Environmental Benefits of Recycling. Brussels: BIR, 2008.
  34. Sohn H. Y., Olivas-Martinez M. Lead and Zinc Production. Treatise on Process Metallurgy. Elsevier, 2014:3:671–700.
  35. Total Materia Article. Ausmelt Smelting: Part Three. 2022 [Online]. [Accessed 19.02.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.totalmateria.com/page.aspx?ID=CheckArticle&amp;site=ktn&amp;NM=270">https://www.totalmateria.com/page.aspx?ID=CheckArticle&amp;site=ktn&amp;NM=270</ext-link>
  36. Alexander C., <em>et al.</em> Comparison of environmental performance of modern copper smelting technologies. <em>Clean. Environ. Syst.</em> 2021:3:100052. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.CESYS.2021.100052" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.CESYS.2021.100052</a>">https://doi.org/10.1016/J.CESYS.2021.100052</ext-link>
  37. Arthur P., Edwards J. ISASMELT - A Quiet Revolution. <em>Proc. EMC 2003</em>, 2003.
  38. BOLIDEN. Metals for the sustainable society. Narva: Boliden, 2018.
  39. Americam Iron and Steel Institute. Electric Arc Furnace Steelmaking. Washington: AISI, 2008.
  40. Norgate T. E., Jahanshahi S., Rankin W. J. Alternative Routes to Stainless Steel-A Life Cycle Approach. <em>Proc. Tenth Int. Ferroalloys Congr.</em> 2004:1.
  41. Carpenter A. CO2 abatement in the iron and steel industry. London: IEA Clean Coal Centre, 2012.
  42. Moya J. A., <em>et al.</em> Energy Efficiency and GHG Emissions: Prospective Scenarios for the Aluminium Industry. Luxembourg: Publications Office of the European Union, 2015. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2790/9500" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2790/9500</a>">https://doi.org/10.2790/9500</ext-link>
  43. Kongoli F., Arthur P. S. ISASMELT - 6,000,000 TPA and Rising. <em>Sohn Int. Symp. Adv. Process. Met. Mater.</em> 2006:1–16.
  44. Siegmund A. Modern Applied Technologies for Primary Lead Smelting at the Beginning of the 21 Century. <em>Mater. Sci.</em> 2013.
  45. Simonov Yu.-N., Belova S.-A., Simonov M.-Yu. Metallurgicheskie technologii (Metallurgical technologies). Perm: PNIPU, 2012. (in Russian)
  46. Pan D., <em>et al.</em> A review on lead slag generation, characteristics, and utilization. <em>Resour. Conserv. Recycl.</em> 2019:146:140–155. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.RESCONREC.2019.03.036" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.RESCONREC.2019.03.036</a>">https://doi.org/10.1016/J.RESCONREC.2019.03.036</ext-link>
  47. Hoffman C., Van Hoey M., Zeumer B. Decarbonization challenge for steel. New York: McKinsey&amp;Company, 2020.
  48. Williamson IR. Industrial Application of Temperature Measurement. 2022 [Online]. [Accessed 19.02.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.williamsonir.com/blog/industrial-application-of-temperature-measurement/">https://www.williamsonir.com/blog/industrial-application-of-temperature-measurement/</ext-link>
  49. Pérez K., <em>et al.</em> Environmental, economic and technological factors affecting Chilean copper smelters – A critical review. <em>J. Mater. Res. Technol.</em> 2021:15:213–225. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.JMRT.2021.08.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.JMRT.2021.08.007</a>">https://doi.org/10.1016/J.JMRT.2021.08.007</ext-link>
  50. Zhou H., <em>et al.</em> Mineralogical and morphological factors affecting the separation of copper and arsenic in flash copper smelting slag flotation beneficiation process. <em>J. Hazard. Mater.</em> 2021:401:123293. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.JHAZMAT.2020.123293" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.JHAZMAT.2020.123293</a>">https://doi.org/10.1016/J.JHAZMAT.2020.123293</ext-link>
  51. Morris A. E., Wadsley M. Metal Extraction: Phase Stability Diagrams. <em>Encycl. Mater. Sci. Technol.</em> 2001:5362–5377. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/B0-08-043152-6/00936-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B0-08-043152-6/00936-0</a>">https://doi.org/10.1016/B0-08-043152-6/00936-0</ext-link>
  52. Hayati M., Mahdevari S., Barani K. An improved MADM-based SWOT analysis for strategic planning in dimension stones industry. <em>Resour. Policy</em> 2023:80:103287. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.RESOURPOL.2022.103287" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.RESOURPOL.2022.103287</a>">https://doi.org/10.1016/J.RESOURPOL.2022.103287</ext-link>
  53. VVD. AB atļaujas (AB Permitions) [Online]. [Accessed 13.01.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://registri.vvd.gov.lv/izsniegtasatlaujas-un-licences/a-un-b-atlaujas/">https://registri.vvd.gov.lv/izsniegtasatlaujas-un-licences/a-un-b-atlaujas/</ext-link>
  54. Dock J., Kienberger T. Techno-economic case study on Oxyfuel technology implementation in EAF steel mills – Concepts for waste heat recovery and carbon dioxide utilization. <em>Clean. Eng. Technol.</em> 2022:9:100525. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.CLET.2022.100525" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.CLET.2022.100525</a>">https://doi.org/10.1016/J.CLET.2022.100525</ext-link>
  55. Andonovski G., Tomažic S. Comparison of data-based models for prediction and optimization of energy consumption in electric arc furnace (EAF). <em>IFAC-PapersOnLine</em> 2022:55(20):373–378. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.IFACOL.2022.09.123" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.IFACOL.2022.09.123</a>">https://doi.org/10.1016/J.IFACOL.2022.09.123</ext-link>
  56. Kim J., <em>et al.</em> Optimized rotary hearth furnace utilization with blast furnace and electric arc furnace: Techno-economics, CO2 reduction. <em>Fuel Process. Technol.</em> 2022:237:107450. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.FUPROC.2022.107450" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.FUPROC.2022.107450</a>">https://doi.org/10.1016/J.FUPROC.2022.107450</ext-link>
  57. Ceramic Industry. Understanding the benefits of Electric Arc Furnace technology. Washington: CI, 2015.
  58. Tian B., <em>et al.</em> Effect of hot metal charging on economic and environmental indices of electric arc furnace steelmaking in China. <em>J. Clean. Prod.</em> 2022:379:134597. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.JCLEPRO.2022.134597" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.JCLEPRO.2022.134597</a>">https://doi.org/10.1016/J.JCLEPRO.2022.134597</ext-link>
  59. Xia Z., <em>et al.</em> The CO<sub>2</sub> reduction potential for the oxygen blast furnace with CO<sub>2</sub> capture and storage under hydrogen-enriched conditions. <em>Int. J. Greenh. Gas Control</em> 2022:121:103793. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.IJGGC.2022.103793" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.IJGGC.2022.103793</a>">https://doi.org/10.1016/J.IJGGC.2022.103793</ext-link>
  60. Suopajärvi H., Pongrácz E., Fabritius T. Bioreducer use in Finnish blast furnace ironmaking – Analysis of CO2 emission reduction potential and mitigation cost. <em>Appl. Energy</em> 2014:124:82–93. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/J.APENERGY.2014.03.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/J.APENERGY.2014.03.008</a>">https://doi.org/10.1016/J.APENERGY.2014.03.008</ext-link>
  61. Total Materia Article. The Queneau-Schuhmann-Lurgi (QSL) Process. 2015 [Online]. [Accessed 20.02.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.totalmateria.com/page.aspx?ID=CheckArticle&amp;site=ktn&amp;NM=363">https://www.totalmateria.com/page.aspx?ID=CheckArticle&amp;site=ktn&amp;NM=363</ext-link>
  62. Schlesinger M. E., <em>et al.</em> Bath Matte Smelting: Ausmelt/Isasmelt and Mitsubishi. Extractive Metallurgy of Copper. Elsevier, 2011:155–178.
  63. Metso Outotec. Decarbonization of the Ausmelt process. 2023 [Online]. [Accessed 19.02.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.mogroup.com/insights/blog/mining-and-metals/decarbonization-of-the-ausmelt-process">https://www.mogroup.com/insights/blog/mining-and-metals/decarbonization-of-the-ausmelt-process</ext-link>
  64. George J. P., Pramod V. R. SWOT Analysis of Steel Re Rolling Mills (A comparative study of international brand with a local brand). <em>Int. J. Sci. Res. Publ.</em> 2013:3(12).
  65. Iskanius P., Muhos M. Drivers towards agility in the Finnish metal industry. <em>Proc. Int. Conf. Ind. Eng. Syst. Manag.</em> 2007.
  66. ECORYS SCS Group. FWC Sector Competitiveness Studies - Competitiveness of the EU Metalworking and Metal Articles Industries. Rotterdam: ECORYS SCS Group, 2009.
  67. LVGMC. Pollutant Release and Transfer Register [Online]. [Accessed 13.01.2023]. Available: <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://prtr.lvgmc.lv/">https://prtr.lvgmc.lv/</ext-link>
DOI: https://doi.org/10.2478/rtuect-2024-0001 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 1 - 11
Submitted on: Mar 29, 2023
Accepted on: Oct 9, 2023
Published on: Feb 10, 2024
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2024 Viktorija Terjanika, Jelena Pubule, Elina Mihailova, Beate Zlaugotne, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.