References
- European Commission. REPowerEU: affordable, secure and sustainable energy for Europe [Online]. [Accessed 06.09.2023]. Available: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/repowereu-affordable-secure-and-sustainable-energy-europe_en
- Mertins A., Wawer T. How to use biogas? A systematic review of biogas utilization pathways and business models. Bioresour. Bioprocess. 2022:9(1):59. https://doi.org/10.1186/s40643-022-00545-z
- Voelklein M. A., Rusmanis D., Murphy J. D. Biological methanation: Strategies for in-situ and ex-situ upgrading in anaerobic digestion. Appl. Energy 2019:235:1061–1071. https://doi.org/10.1016/j.apenergy.2018.11.006
- Baransi-Karkaby K., et al. Innovative ex-situ biological biogas upgrading using immobilized biomethanation bioreactor (IBBR). Water Sci. Technol. 2020:81(6):1319–1328. https://doi.org/10.2166/wst.2020.234
- Ghaib K., Ben-Fares F.-Z. Power-to-Methane: A state-of-the-art review. Renew. Sustain. Energy Rev. 2018:81:433–446. https://doi.org/10.1016/j.rser.2017.08.004
- Götz M., et al. Renewable Power-to-Gas: A technological and economic review. Renew. Energy 2016:85:1371–1390. https://doi.org/10.1016/j.renene.2015.07.066
- Angelidaki I., et al. Biogas upgrading and utilization: Current status and perspectives. Biotechnol. Adv. 2018:36(2):452–466. https://doi.org/10.1016/j.biotechadv.2018.01.011
- Sieborg M. U., et al. Biomethanation in a thermophilic biotrickling filter using cattle manure as nutrient media. Bioresour. Technol. Rep. 2020:9:100391. https://doi.org/10.1016/j.biteb.2020.100391
- Jensen M. B., et al. Selecting carrier material for efficient biomethanation of industrial biogas-CO2 in a trickle-bed reactor. J. CO2 Util. 2021:51:101611. https://doi.org/10.1016/j.jcou.2021.101611
- Khatiwada D., et al. Circularity in the Management of Municipal Solid Waste – A Systematic Review. Environ. Clim. Technol. 2021:25(1):491–507. https://doi.org/10.2478/rtuect-2021-0036
- Elliott A., Mahmood T., Kamal A. Boiler ash utilization in the Canadian pulp and paper industry. J. Environ. Manage. 2022:319:115728. https://doi.org/10.1016/j.jenvman.2022.115728
- Kusnere Z., et al. Packing materials for biotrickling filters used in biogas upgrading – biomethanation. Agronomy Research 2021:19(1):819–833. https://doi.org/10.15159/AR.21.082
- Kaul A., et al. Combining a robust thermophilic methanogen and packing material with high liquid hold-up to optimize biological methanation in trickle-bed reactors. Bioresour. Technol. 2022:345:126524. https://doi.org/10.1016/j.biortech.2021.126524
- Daglioglu S. T., et al. Comparative Evaluation of Two Packing Materials (Glass Pipe and Ceramic Ball) for Hydrogenothrophic Biomethanation (BHM) of CO2. Waste Biomass Valorization 2021:12(7):3717–3726. https://doi.org/10.1007/s12649-020-01242-8
- Green Gravels [Online]. [Accessed 06.09.2023]. Available: https://gravels.ee/en/foam-glass-gravel/
- Ashraf M. T., Triolo J. M., Yde L. Assay for Testing Packing Materials for Ex-Situ Bio-Methanation. Proc. 28th Eur. Biom. Conf.: Bioecon. Rol. post-pand. Econ. Rec. 2020:317–321. https://doi.org/10.5071/28thEUBCE2020-2DO.4.1
- Lauka D., Blumberga D., Muižniece I. Materials fermentācijas stimulēsanai biogāzes ražošanas procesā (Materials for stimulating fermentation in the biogas production process.). Patent Nr. 15161. Riga: RTU, 2015. (in Latvian)
- Angelidaki I., et al. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2009:59(5):927–934. https://doi.org/10.2166/wst.2009.040
- Hafner S. D., et al. Calculation of Methane Production from Manometric Measurements. Leipzig: DBFZ, 2020.
- Kleerebezem E., van Loosdrecht M. C. M. A Generalized Method for Thermodynamic State Analysis of Environmental Systems. Crit. Rev. Environ. Sci. Technol. 2010:40(1):1–54. https://doi.org/10.1080/10643380802000974
- Dorado A. D., et al. A comparative study based on physical characteristics of suitable packing materials in biofiltration. Environ. Technol. 2010:31(2):193–204. https://doi.org/10.1080/09593330903426687
- Fernandes H. R., Tulyaganov D. U., Ferreira J. M. F. Preparation and characterization of foams from sheet glass and fly ash using carbonates as foaming agents. Ceram. Int. 2009:35(1):229–235. https://doi.org/10.1016/j.ceramint.2007.10.019
- Sepulveda P., Binner J. G. P. Processing of cellular ceramics by foaming and in situ polymerisation of organic monomers. J. Eur. Ceram. Soc. 1999:19(12):2059–2066. https://doi.org/10.1016/S0955-2219(99)00024-2
- Burkhardt M. Busch G. Methanation of hydrogen and carbon dioxide. Appl. Energy 2013:111:74–79. https://doi.org/10.1016/j.apenergy.2013.04.080
- Wormald R. M., et al. Hydrogenotrophic Methanogenesis Under Alkaline Conditions. Front. Microbiol. 2020:11:614227. https://doi.org/10.3389/fmicb.2020.614227
- Lauka D., et al. Preliminary Analysis of Anaerobic Digestion Process using Cerathophyllumdemersum and Low Carbon Content Additives: A Batch Test Study. Energy Procedia 2015:72:142–147. https://doi.org/10.1016/j.egypro.2015.06.020
- Benjaminsson G., Benjaminsson J., Rudberg R. B. Power to Gas – a Technical Review. Malmo: SGC, 2013.
- Mostbauer P., et al. Pilot scale evaluation of the BABIU process – Upgrading of landfill gas or biogas with the use of MSWI bottom ash. Waste Manag. 2014:34(1):125–133. https://doi.org/10.1016/j.wasman.2013.09.016