Have a personal or library account? Click to login

Cost-Optimal Policy Strategies for Reaching Energy Efficiency Targets and Carbon Neutrality

Open Access
|Dec 2023

References

  1. European Commission. Communication from the Commission. The European Green Deal. Brussels: EC, 2019.
  2. Veum K., Bauknecht D. How to reach the EU renewables target by 2030? An analysis of the governance framework. Energy Policy 2019:127:299–307. https://doi.org/10.1016/j.enpol.2018.12.013
  3. Hof A. F., et al. The EU 40 % greenhouse gas emission reduction target by 2030 in perspective. Int. Environ. Agreem.: Polit. Law Econ. 2016:16(3):375–392. https://doi.org/10.1007/s10784-016-9317-x
  4. Fitch-Roy O., Benson D., Mitchell C. Wipeout? Entrepreneurship, policy interaction and the EU’s 2030 renewable energy target. J. Eur. Integr. 2019:41(1):87–103. https://doi.org/10.1080/07036337.2018.1487961
  5. Resch G., et al. Assessment of Policy Pathways for Reaching the EU Target of (At Least) 27% Renewable Energies by 2030. Eur. Dimens. Ger. Energy Transit. 2019:45–65. https://doi.org/10.1007/978-3-030-03374-3_4
  6. Rafiee A., et al. The Future Impact of Carbon Tax on Electricity Flow between Great Britain and Its Neighbors until 2030. Appl. Sci. 2021:11(21):10460. https://doi.org/10.3390/app112110460
  7. Simoes S., et al. Impact of different levels of geographical disaggregation of wind and PV electricity generation in large energy system models: A case study for Austria. Renew. Energy 2017:105:183–198. https://doi.org/10.1016/j.renene.2016.12.020
  8. Meessen J., et al. Analysing the impact assessment on raising the EU 2030 climate targets. Berlin: Ecologic Institute, 2020.
  9. Temursho U., et al. Distributional impacts of reaching ambitious near-term climate targets across households with heterogeneous consumption patterns. Luxembourg: Publications Office of the European Union, 2020.
  10. Li S., Li L., Wang L. 2030 Target for Energy Efficiency and Emission Reduction in the EU Paper Industry. Energies 2020:14(1):40. https://doi.org/10.3390/en14010040
  11. Runge-Metzger A., Wehrheim P. Agriculture and forestry in the EU’s 2030 climate target. In Towards a Climate-Neutral Europe 2019:165–179. https://doi.org/10.4324/9789276082569-8
  12. Siddi M. Coping with Turbulence: EU Negotiations on the 2030 and 2050 Climate Targets. Polit. Gov. 2021:9(3):327–336. https://doi.org/10.17645/pag.v9i3.4267
  13. Papadogeorgos I., et al. Multicriteria Assessment of Alternative Policy Scenarios for Achieving EU RES Target by 2030. Strategic Innovative Marketing 2017:405–412. https://doi.org/10.1007/978-3-319-56288-9_54
  14. OECD. Further efforts are needed to meet the 2030 EU target: GHG emission trends and projections towards targets. OECD Environmental Performance Reviews: Latvia 2019. Paris: OECD Publishing, 2019.
  15. Dolge K., Blumberga D. Economic growth in contrast to GHG emission reduction measures in Green Deal context. Ecol. Ind. 2021:130:108153. https://doi.org/10.1016/j.ecolind.2021.108153.
  16. Connolly D., et al. Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union. Renew. Sustain. Energy Rev. 2016:60:1634–1653. https://doi.org/10.1016/j.rser.2016.02.025
  17. Ruiz P., et al. The JRC-EU-TIMES model: bioenergy potentials for EU and neighbouring countries. Luxembourg: Publications Office of the European Union, 2015.
  18. Allena-Ozoliņa S. A., et al. Can energy sector reach carbon neutrality with biomass limitations? Energy 2022:249:123797. https://doi.org/10.1016/j.energy.2022.123797
  19. Blumberga D., et al. Modelling the Latvian power market to evaluate its environmental long-term performance. Appl. Energy 2016:162:1593–1600. https://doi.org/10.1016/j.apenergy.2015.06.016
  20. Allena-Ozolina S., Bažbauers G. System dynamics model of research, innovation and education system for efficient use of bio-resources. Energy Procedia 2017:128:350–357. https://doi.org/10.1016/j.egypro.2017.09.051
  21. Allena-Ozolina S., et al. Integrated MARKAL-EFOM System (TIMES) Model for Energy Sector Modelling. RTUCon 2020:456–462. https://doi.org/10.1109/rtucon51174.2020.9316623
  22. Allena-Ozolina S., et al. Decarbonisation Pathways of Industry in TIMES Model. Environ. Clim. Technol. 2021:25(1):318–330. https://doi.org/10.2478/rtuect-2021-0023
  23. Dupont C., Torney D. European Union Climate Governance and the European Green Deal in Turbulent Times. Polit. Gov. 2021:9(3):312–315. https://doi.org/10.17645/pag.v9i3.4896
  24. McDowall W., et al. Is the optimal decarbonization pathway influenced by indirect emissions? Incorporating indirect life-cycle carbon dioxide emissions into a European TIMES model. J. Clean. Prod. 2018:170:260–268. https://doi.org/10.1016/j.jclepro.2017.09.132
  25. Zhang H., Chen W., Huang W. TIMES modelling of transport sector in China and USA: Comparisons from a decarbonization perspective. Appl. Energy 2016:162:1505–1514. https://doi.org/10.1016/j.apenergy.2015.08.124
  26. Zhu Y., Ming J. Lagrangian decomposition for stochastic TIMES energy system optimization model. AIMS Math. 2022:7(5):7964–7996. https://doi.org/10.3934/math.2022445
  27. Allena-Ozolina S., et al. Passenger Transport Shift to Green Mobility – Assessment Using TIMES Model. Environ. Clim. Technol. 2022:26(1):341–356. https://doi.org/10.2478/rtuect-2022-0026
  28. Salvucci R., et al. Modelling transport modal shift in TIMES models through elasticities of substitution. Appl. Energy 2018:232:740–751. https://doi.org/10.1016/j.apenergy.2018.09.083
  29. Pina A., Silva C. A., Ferrão P. Modeling hourly electricity dynamics for policy making in long-term scenarios. Energy Policy 2011:39(9):4692–4702. https://doi.org/10.1016/j.enpol.2011.06.062
  30. Daly H., et al. Modal Shift of Passenger Transport in a TIMES Model: Application to Ireland and California. 2015:279–291. https://doi.org/10.1007/978-3-319-16540-0_16
  31. Lima J. A. Electricity Storage as a Matching Tool Between Variable Renewable Energy and Load. SSRN Electron. J. 2019. https://doi.org/10.2139/ssrn.3389673
  32. Green R., et al. Storing Wind for a Rainy Day: What Kind of Electricity Does Denmark Export? Energy J. 2012:33(3). https://doi.org/10.5547/01956574.33.3.1
  33. Brown T., et al. Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system. Energy 2018:160:720–739. https://doi.org/10.1016/j.energy.2018.06.222
  34. Ollier L., et al. The European 2030 climate and energy package: do domestic strategy adaptations precede EU policy change? Policy Sci. 2022:55:161–184. https://doi.org/10.1007/s11077-022-09447-5
  35. Francesco D. L., et al. Wind potentials for EU and neighbouring countries. Luxembourg: Publications Office of the European Union, 2018.
  36. Dzintars J., et al. Adaptation of TIMES Model Structure to Industrial, Commercial and Residential Sectors. Env. Clim. Tech. 2020:24(1):392–405. https://doi.org/10.2478/rtuect-2020-0023
  37. Ministry of Economics Republic of Latvia. ECONOMIC DEVELOPMENT OF LATVIA. Riga: EM, 2022.
  38. Capros P., et al. EU reference scenario 2020: energy, transport and GHG emissions: trends to 2050. Luxembourg: Publications Office of the European Union, 2021.
  39. European Commission. Directorate General for Energy., European Commission. Directorate General for Climate Action., European Commission. Directorate General for Mobility and Transport. EU reference scenario 2020: energy, transport and GHG emissions: trends to 2050. LU: Publications Office, 2021.
DOI: https://doi.org/10.2478/rtuect-2023-0073 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 999 - 1014
Submitted on: Apr 11, 2023
Accepted on: Nov 13, 2023
Published on: Dec 26, 2023
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2023 Ieva Pakere, Ritvars Freimanis, Signe Alena-Ozolina, Pauls Asaris, Andrea Demurtas, Marine Gorner, Jessica Yearwood, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.