BBC. Climate change: EU to cut CO2 emissions by 55% by 2030. BBC, Apr. 21, 2021. [Online]. [Accessed: 26.12.2022. Available: https://www.bbc.com/news/world-europe-56828383
European Commission. Heating and cooling. [Online]. [Accessed: 18.04.2023]. Available: https://energy.ec.europa.eu/topics/energy-efficiency/heating-and-cooling_en#documents
Arlene Haas J. The Overlooked Benefits of District Energy Systems. [Online]. [Accessed: 02.11.2023]. Available: https://www.burnhamnationwide.com/final-review-blog/-benefits-of-district-energy-systems
Lake A., Rezaie B., Beyerlein S. Review of district heating and cooling systems for a sustainable future. Renewable and Sustainable Energy Reviews 2017:67:417–425. https://doi.org/10.1016/j.rser.2016.09.061
Averfalk H., Ingvarsson P., Persson U., Gong M., Werner S. Large heat pumps in Swedish district heating systems. Renewable and Sustainable Energy Reviews 2017:79:1275–1284. https://doi.org/10.1016/j.rser.2017.05.135
Jiang M., Rindt C., Smeulders D. M. J. Optimal Planning of Future District Heating Systems – A Review. Energies (Basel) 2022:15(19):7160. https://doi.org/10.3390/en15197160
Dahash A., Ochs F., Janetti M. B., Streicher W. Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems. Appl Energy 2019:239. https://doi.org/10.1016/j.apenergy.2019.01.189
Rad F. M., Fung A. S. Solar community heating and cooling system with borehole thermal energy storage – Review of systems. Renewable and Sustainable Energy Reviews 2016:60:1550–1561. https://doi.org/10.1016/j.rser.2016.03.025
Inayat A., Raza M. District cooling system via renewable energy sources: A review. Renewable and Sustainable Energy Reviews 2019:107:360–373. https://doi.org/10.1016/j.rser.2019.03.023
Lauka D., Slisane D., Ievina L., Muizniece I., Blumberga D. When Bioeconomy Development Becomes a Biomass Energy Competitor. Environmental and Climate Technologies 2019:23(3):347–359. https://doi.org/10.2478/rtuect-2019-0100
Kaķis R., Poļikarpova I., Pakere I., Blumberga D. Is It Possible to Obtain More Energy from Solar DH Field? Interpretation of Solar DH System Data. Environmental and Climate Technologies 2021:25(1):1284–1292. https://doi.org/10.2478/rtuect-2021-0097
Tschopp D., Tian Z., Berberich M., Fan J., Perers B., Furbo S. Large-scale solar thermal systems in leading countries: A review and comparative study of Denmark, China, Germany and Austria. Appl Energy 2020:270:114997. https://doi.org/10.1016/j.apenergy.2020.114997
Tian Z., et al. Large-scale solar district heating plants in Danish smart thermal grid: Developments and recent trends. Energy Convers Manag 2019:189:67–80. https://doi.org/10.1016/j.enconman.2019.03.071
Weiss W., Spörk-Dür M. Solar Heat Worldwide. 2023. [Online]. [Accessed: 05.11.2023]. Available: https://www.iea-shc.org/Data/Sites/1/publications/Solar-Heat-Worldwide-2023.pdf
ur Rehman H., Hirvonen J., Kosonen R., Sirén K. Computational comparison of a novel decentralized photovoltaic district heating system against three optimized solar district systems. Energy Convers Manag 2019:191:39–54. https://doi.org/10.1016/j.enconman.2019.04.017
Carotenuto A., Figaj R. D., Vanoli L. A novel solar-geothermal district heating, cooling and domestic hot water system: Dynamic simulation and energy-economic analysis. Energy 2017:141:2652–2669. https://doi.org/10.1016/j.energy.2017.08.084
Hirvonen J., Sirén K. A novel fully electrified solar heating system with a high renewable fraction – Optimal designs for a high latitude community. Renew Energy 2018:127:298–309. https://doi.org/10.1016/j.renene.2018.04.028
Pieper H., Ommen T., Elmegaard B., Volkova A., Markussen W. B. Optimal Design and Dispatch of Electrically Driven Heat Pumps and Chillers for a New Development Area. Environmental and Climate Technologies 2020:24(3):470–482. https://doi.org/10.2478/rtuect-2020-0117
Ayadi O., Shadid R., Bani-Abdullah A., Alrbai M., Abu-Mualla M., Balah N. Experimental comparison between Monocrystalline, Polycrystalline, and Thin-film solar systems under sunny climatic conditions. Energy Reports 2022:8:218–230. https://doi.org/10.1016/j.egyr.2022.06.121
Cao S., Hasan A., Sirén K. Analysis and solution for renewable energy load matching for a single-family house. Energy Build 2013:65:398–411. https://doi.org/10.1016/j.enbuild.2013.06.013
Buffa S., Cozzini M., D’Antoni M., Baratieri M., Fedrizzi R. 5th generation district heating and cooling systems: A review of existing cases in Europe. Renewable and Sustainable Energy Reviews 2019:104:504–522. https://doi.org/10.1016/j.rser.2018.12.059
Zarate-Perez E., Rosales-Asensio E., González-Martínez A., de Simón-Martín M., Colmenar-Santos A. Battery energy storage performance in microgrids: A scientific mapping perspective. Energy Reports 2022:8(9):259–268. https://doi.org/10.1016/j.egyr.2022.06.116
Clarivate. Research Database in Web of Science – PVDHC. [Online]. [Accessed: 29.10.2023]. Available: https://www.webofscience.com/wos/woscc/summary/878b1326-1493-4b0b-af9b-393258d580b1-aef4e862/relevance/1
Clarivate. Research Database In Web of Science – Solar DHC. [Online]. [Accessed: 29.11.2023]. Available: https://www.webofscience.com/wos/woscc/summary/10d7831e-eb68-4c6f-89d1-150fe1c77196-b17a05c4/relevance/1
Sami S. A Predictive Numerical Model for Analyzing Performance of Solar Photovoltaic, Geothermal Hybrid System for Electricity Generation and District Heating. Science Journal of Energy Engineering 2017:5(1):13–30. https://doi.org/10.11648/j.sjee.20170501.12
Aste N., et al. A renewable energy scenario for a new low carbon settlement in northern Italy: Biomass district heating coupled with heat pump and solar photovoltaic system. Energy 2020:206:118091. https://doi.org/10.1016/j.energy.2020.118091
Quirosa G., Torres M., Chacartegui R. Analysis of the integration of photovoltaic excess into a 5th generation district heating and cooling system for network energy storage. Energy 2022:239:122202. https://doi.org/10.1016/j.energy.2021.122202
Ayele G. T., et al. Exergy analysis and thermo-economic optimization of a district heating network with solar-photovoltaic and heat pumps. [Online]. [Accessed: 29.11.2023]. Available: https://hal.archives-ouvertes.fr/hal-02291269
Sami S., Marin E. Simulation of Solar Photovoltaic, Biomass Gas Turbine and District Heating Hybrid System. International Journal of Sustainable Energy and Environmental Research 2017:6(1):9–26. https://doi.org/10.18488/journal.13.2017.61.9.26
Kallert A., Yu Y. J., Lounissi D., Bouaziz N., Daghsen K. Energy, exergy and environment analyses of a hybrid PV-system district heating system for a new household settlement in Germany. International Journal of Exergy 2022:38(3):267. https://doi.org/10.1504/IJEX.2022.10048871
Vivian J., Chinello M., Zarrella A., de Carli M. Investigation on Individual and Collective PV Self-Consumption for a Fifth Generation District Heating Network. Energies (Basel) 2022:15(3):1022. https://doi.org/10.3390/en15031022
Seidel P., Altenburger M., Seifert J., Potyka M. S. Potential assessment of coupling PV electricity with district heating supply of building. 2022: CLIMA 2022 The 14th REHVA HVAC World Congress. https://doi.org/10.34641/clima.2022.258
Lämmle M. Smart Urban Energy Concept: Integration of Heat Pumps, PV, Cogeneration, and District Heating in existing Multi-Family Buildings. International Solar Energy Society (ISES) 2021:1–5. https://doi.org/10.18086/eurosun.2020.02.04
Hałaj E., Kotyza J., Hajto M., Pełka G., Luboń W., Jastrzębski P. Upgrading a District Heating System by Means of the Integration of Modular Heat Pumps, Geothermal Waters, and PVs for Resilient and Sustainable Urban Energy. Energies (Basel) 2021:14(9):2347. https://doi.org/10.3390/en14092347
Ismaen R., Kucukvar M., El Mekkawy T. Y., Elomri A. Optimization and enviro-economic assessment of solar-cooling systems towards sustainable development: A case study of Qatar. J Clean Prod 2023:419:138253. https://doi.org/10.1016/j.jclepro.2023.138253
Keskin I., Soykan G. Distribution grid electrical performance and emission analysis of combined cooling, heating and power (CCHP)-photovoltaic (PV)-based data center and residential customers. J Clean Prod 2023:414:137448. https://doi.org/10.1016/j.jclepro.2023.137448
Al-Nini A., Ya H. H., Al-Mahbashi N., Hussin H. A Review on Green Cooling: Exploring the Benefits of Sustainable Energy-Powered District Cooling with Thermal Energy Storage. Sustainability 2023:15(6):5433. https://doi.org/10.3390/su15065433
Novosel T., Feijoo F., Duić N., Domac J. Impact of district heating and cooling on the potential for the integration of variable renewable energy sources in mild and Mediterranean climates. Energy Convers Manag 2022:272:116374. https://doi.org/10.1016/j.enconman.2022.116374
Słomczyńska K., Mirek P., Panowski M. Solar Heating for Pit Thermal Energy Storage – Comparison of Solar Thermal and Photovoltaic Systems in TRNSYS 18. Advances in Science and Technology Research Journal 2022:16(5):40–51. https://doi.org/10.12913/22998624/153015
Kang A., Korolija I., Rovas D. Photovoltaic Thermal District Heating: A review of the current status, opportunities and prospects. Appl Therm Eng 2022:217:119051. https://doi.org/10.1016/j.applthermaleng.2022.119051
Al-Sayyab A. K. S., Navarro-Esbrí J., Barragán-Cervera A., Mota-Babiloni A. Techno-economic analysis of a PV/T waste heat–driven compound ejector-heat pump for simultaneous data centre cooling and district heating using low global warming potential refrigerants. Mitig Adapt Strateg Glob Chang 2022:27(7). https://doi.org/10.1007/s11027-022-10017-6
Barbu M., Minciuc E., Frusescu D. C., Tutica D. Integration of Hybrid Photovoltaic Thermal Panels (PVT) in the District Heating System of Bucharest, Romania. In 10th International Conference on Energy and Environment (CIEM), IEEE, Oct. 2021. https://doi.org/10.1109/CIEM52821.2021.9614721
Pardo García N., Zubi G., Pasaoglu G., Dufo-López R. Photovoltaic thermal hybrid solar collector and district heating configurations for a Central European multi-family house. Energy Convers Manag 2017:148:915–924. https://doi.org/10.1016/j.enconman.2017.05.065
Mi P., Zhang J., Han Y., Guo X. Study on energy efficiency and economic performance of district heating system of energy saving reconstruction with photovoltaic thermal heat pump. Energy Convers Manag 2021:247:114677. https://doi.org/10.1016/j.enconman.2021.114677
Pakere I., Lauka D., Blumberga D. Solar power and heat production via photovoltaic thermal panels for district heating and industrial plant. Energy 2018:154:424–432. https://doi.org/10.1016/j.energy.2018.04.138
Lepiksaar K., Kalme K., Siirde A., Volkova A. Heat Pump Use in Rural District Heating Networks in Estonia. Environmental and Climate Technologies 2021:25(1):786–802. https://doi.org/10.2478/rtuect-2021-0059
Abokersh M. H., Saikia K., Cabeza L. F., Boer D., Vallès M. Flexible heat pump integration to improve sustainable transition toward 4th generation district heating. Energy Convers Manag 2020:225:113379. https://doi.org/10.1016/j.enconman.2020.113379
Maximov S. A., Mehmood S., Friedrich D. Multi-objective optimisation of a solar district heating network with seasonal storage for conditions in cities of southern Chile . Sustain Cities Soc 2021:73:103087. https://doi.org/10.1016/j.scs.2021.103087
Feofilovs M., Pakere I., Romagnoli F. Life Cycle Assessment of Different Low-Temperature District Heating Development Scenarios: A Case Study of Municipality in Latvia. Environmental and Climate Technologies 2019:23(2):272–290. https://doi.org/10.2478/rtuect-2019-0068
Pardo García N., Zubi G., Pasaoglu G., Dufo-López R. Photovoltaic thermal hybrid solar collector and district heating configurations for a Central European multi-family house. Energy Convers Manag 2017:148:915–924. https://doi.org/10.1016/j.enconman.2017.05.065
Calise F., Cappiello F. L., Dentice M. d’Accadia, Vicidomini M. A novel smart energy network paradigm integrating combined heat and power, photovoltaic and electric vehicles. Energy Convers Manag 2022:260:115599. https://doi.org/10.1016/j.enconman.2022.115599
Wirtz M., Kivilip L., Remmen P., Müller D. 5th Generation District Heating: A novel design approach based on mathematical optimization. Appl Energy 2020:260:114158. https://doi.org/10.1016/j.apenergy.2019.114158
Ismaen R., ElMekkawy T. Y., Pokharel S., Elomri A., Al-Salem M. Solar Technology and District Cooling System in a Hot Climate Regions: Optimal Configuration and Technology Selection. Energies (Basel) 2022:15(7):2657. https://doi.org/10.3390/en15072657
Comodi G., Bartolini A., Carducci F., Nagaranjan B., Romagnoli A. Achieving low carbon local energy communities in hot climates by exploiting networks synergies in multi energy systems. Appl Energy 2019:256:113901. https://doi.org/10.1016/j.apenergy.2019.113901
Volkova A., Pakere I., Murauskaite L., Huang P., Lepiksaar K., Zhang X. 5th generation district heating and cooling (5GDHC) implementation potential in urban areas with existing district heating systems. Energy Reports 2022:8:10037–10047. https://doi.org/10.1016/j.egyr.2022.07.162
Puschnigg S., Jauschnik G., Moser S., Volkova A., Linhart M. A review of low-temperature sub-networks in existing district heating networks: examples, conditions, replicability. Energy Reports 2021:7:18–26. https://doi.org/10.1016/j.egyr.2021.09.044
Chung J., Sukumaran S., Hlebnikov A., Volkova A. Design and Development of a Conceptual Solar Energy Laboratory for District Heating Applications. Solar 2023:3(3):504–521. https://doi.org/10.3390/solar3030028