References
- Hoegh-Guldberg O., et al. The human imperative of stabilizing global climate change at 1.5 °C. Science 2019:365(6459). https://doi.org/10.1126/science.aaw6974
- Santamouris M., et al. Heat mitigation technologies can improve sustainability in cities. An holistic experimental and numerical impact assessment of urban overheating and related heat mitigation strategies on energy consumption, indoor comfort, vulnerability and heat-related mortality and morbidity in cities. Energy and Buildings 2020:217:110002. https://doi.org/10.1016/j.enbuild.2020.110002
- Santamouris M., Vasilakopoulou K. Present and future energy consumption of buildings: Challenges and opportunities towards decarbonisation. [Online], [Accessed: 04:04:2023]. Available: https://reader.elsevier.com/reader/sd/pii/S2772671121000024?token=4F6457740C0129AFB8E37F5A5E86E172D2DDFBE0E31089BB7EF61425F9DEC7307B909B3A14FA86565797E18E6343B195&originRegion=eu-west-1&originCreation=20230404110610
- Wang R., Lu S. A novel method of building climate subdivision oriented by reducing building energy demand. Energy and Buildings 2020:216:109999. https://doi.org/10.1016/j.enbuild.2020.109999
- Ibrahim A., Jimenez-Bescos C. Assessing the Performance Gap of Climate Change on Buildings Design Analytical Stages Using Future Weather Projections. Environmental and Climate Technologies 2020:24(3):119–134. https://doi.org/10.2478/rtuect-2020-0091
- Wang R., Lu S., Zhai X., Feng W. The energy performance and passive survivability of high thermal insulation buildings in future climate scenarios. Building Simulation 2022:15(7):1209–1225. https://doi.org/10.1007/s12273-021-0818-3
- Jimenez-Bescos C., Oregi X. Implementing User Behaviour on Dynamic Building Simulations for Energy Consumption. Environmental and Climate Technologies 2019:23(3):308–318. https://doi.org/10.2478/rtuect-2019-0097
- Laktuka K., Pakere I., Lauka D., Blumberga D., Volkova A. Long-Term Policy Recommendations for Improving the Efficiency of Heating and Cooling. Environmental and Climate Technologies 2021:25(1):382–391. https://doi.org/10.2478/rtuect-2021-0029
- Thapa S., et al. Simulation of thermal comfort and energy demand in buildings of sub-Himalayan eastern India. Impact of climate change at mid (2050) and distant (2080) future. Journal of Building Engineering 2023:68:106068. https://doi.org/10.1016/j.jobe.2023.106068
- Gao B., Zhu X., Ren J., Ran J., Kim M. K., Liu J. Multi-objective optimization of energy-saving measures and operation parameters for a newly retrofitted building in future climate conditions: A case study of an office building in Chengdu. Energy Reports 2023:9:2269–2285. https://doi.org/10.1016/j.egyr.2023.01.049
- Amaripadath D., Rahif R., Zuo W., Velickovic M., Voglaire C., Attia S. Climate change sensitive sizing and design for nearly zero-energy office building systems in Brussels. Energy and Buildings 2023:286:112971. https://doi.org/10.1016/j.enbuild.2023.112971
- Baba F. M., Ge H., Wang L., Zmeureanu R. Assessing and mitigating overheating risk in existing Canadian school buildings under extreme current and future climates. Energy and Buildings 2023:279:112710. https://doi.org/10.1016/j.enbuild.2022.112710
- Jiménez Torres M., Bienvenido-Huertas D., May Tzuc O., Bassam A., Ricalde Castellanos L. J., Flota-Bañuelos M. Assessment of climate change’s impact on energy demand in Mexican buildings: Projection in single-family houses based on Representative Concentration Pathways. Energy for Sustainable Development 2023:72:185–201. https://doi.org/10.1016/j.esd.2022.12.012
- Gaarder J. E., Friis N. K., Larsen I. S., Time B., Møller E. B., Kvande T. Optimization of thermal insulation thickness pertaining to embodied and operational GHG emissions in cold climates – Future and present cases. Building and Environment 2023:234:110187. https://doi.org/10.1016/j.buildenv.2023.110187
- Rodrigues L. T., Gillott M., Tetlow D. Summer overheating potential in a low-energy steel frame house in future climate scenarios. Sustainable Cities and Society 2023:7:1–15. https://doi.org/10.1016/j.scs.2012.03.004
- Al Huneidi D. I., Tahir F., Al-Ghamdi S. G. Energy modeling and photovoltaics integration as a mitigation measure for climate change impacts on energy demand. Energy Reports 2022:8:166–171. https://doi.org/10.1016/j.egyr.2022.01.105
- Ali U., Shamsi M. H., Hoare C., Mangina E., O’Donnell J. Review of urban building energy modeling (UBEM) approaches, methods and tools using qualitative and quantitative analysis. Energy and Buildings 2021:246:111073. https://doi.org/10.1016/j.enbuild.2021.111073
- Dochev I. Computing Residential Heat Demand in Urban Space using QGIS. A Case Study for Shumen, Bulgaria. 2016. [Online]. [Accessed: 14.04.2021]. Available: http://programm.corp.at/cdrom2016/files/CORP2016_proceedings.pdf
- Digimap. [Online]. [Accessed: 28.09.2023]. Available: https://digimap.edina.ac.uk/
- Colouring London. [Accessed: 26.06.2021]. [Online]. Available: https://colouring.london
- Survey O. OS Data Hub. Free Maps & API Data for Developers. [Online]. [Accessed 28.09.2023]. Available: https://osdatahub.os.uk/
- London Datastore – Greater London Authority. [Online]. [Accessed: 28.09.2023]. Available: https://data.london.gov.uk/
- Episcope. Tabula. [Online]. [Accessed: 28.09.2023]. Available: https://episcope.eu/welcome/
- San José R., Pérez J. L., González R. M., Pecci J., Garzón A., Palacios M. Impacts of the 4.5 and 8.5 RCP global climate scenarios on urban meteorology and air quality: Application to Madrid, Antwerp, Milan, Helsinki and London. Journal of Computational and Applied Mathematics 2016:293:192–207. https://doi.org/10.1016/j.cam.2015.04.024