Sukumaran R. K., et al. Butanol Fuel from Biomass: Revisiting ABE Fermentation. Chapter 25. Biofuels: Alternative Feedstocks and Conversion Processes. Elsevier, 2011:571–586.
Dürre P. Fermentative butanol production: Bulk chemical and biofuel. Annals of the New York Academy of Sciences 2008:1125(1):353–362. https://doi.org/10.1196/annals.1419.009
Kregiel D. Biobutanol, the forgotten biofuel candidate: latest research and future directions. Chapter 16 in Handbook of Biofuels. Elsevier, 2022:315–328. https://doi.org/10.1016/b978-0-12-822810-4.00016-6
Lee S. Y., et al. Fermentative butanol production by clostridia. Biotechnology and Bioengineering 2008:101(2):209–228. https://doi.org/10.1002/bit.22003
Yao X., et al. Butanol–isopropanol fermentation with oxygen-tolerant Clostridium beijerinckii XH29. AMB Express 2022:12(1):57. https://doi.org/10.1186/s13568-022-01399-6
Dürre P. New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl Microbiol Biotechnol 1998:49:639–648. https://doi.org/10.1007/s002530051226
Ezeji T. C., Qureshi N., Blaschek H. P. Bioproduction of butanol from biomass: from genes to bioreactors. Current Opinion in Biotechnology 2007:18(3):220–227. https://doi.org/10.1016/j.copbio.2007.04.002
Eloka-Eboka A. C., Maroa S. Biobutanol fermentation research and development: feedstock, process and biofuel production. Chapter 3. Advances and Developments in Biobutanol Production. Elsevier, 2023:79–103.
Behzadian M., et al. A state-of the-art survey of TOPSIS applications. Expert Systems with Applications 2012:39(17):13051–13069. https://doi.org/10.1016/j.eswa.2012.05.056
Raita S., Spalvins K., Blumberga D. Prospect on agro-industrial residues usage for biobutanol production. Agronomy Research 2021:19(1):877–895. https://doi.org/10.15159/AR.21.084
Morvan C., et al. Responses of Clostridia to oxygen: from detoxification to adaptive strategies. Environmental Microbiology 2021:23(8):4112–4125. https://doi.org/10.1111/1462-2920.15665
Yang X., Xu M., Yang S. T. Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose. Metabolic Engineering 2015:32:39–48. https://doi.org/10.1016/j.ymben.2015.09.001
Zhang J., et al. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production. Metabolic Engineering 2018:47:49–59. https://doi.org/10.1016/j.ymben.2018.03.007
Wu Y. D., et al. Impact of zinc supplementation on the improved fructose/xylose utilization and butanol production during acetone-butanol-ethanol fermentation. Journal of Bioscience and Bioengineering 2016:121(1):67–72. https://doi.org/10.1016/j.jbiosc.2015.05.003
Xin F., et al. Biobutanol Production from Crystalline Cellulose through Consolidated Bioprocessing. Trends in Biotechnology 2019:37(2):167–180. https://doi.org/10.1016/j.tibtech.2018.08.007
Jang Y. S., Malaviya A., Lee S. Y. Acetone-butanol-ethanol production with high productivity using Clostridium acetobutylicum BKM19. Biotechnology and Bioengineering 2013:110(6):1646–1653. https://doi.org/10.1002/bit.24843
Tsai T. Y., et al. Biobutanol production from lignocellulosic biomass using immobilized Clostridium acetobutylicum. Applied Energy 2020:277:115531. https://doi.org/10.1016/j.apenergy.2020.115531
Liu X., et al. Enhancing butanol tolerance and preventing degeneration in Clostridium acetobutylicum by 1-butanol-glycerol storage during long-term preservation. Biomass Bioenergy 2014:69:192–167. https://doi.org/10.1016/j.biombioe.2014.07.019
Lin D. S., et al. Bio-butanol production from glycerol with Clostridium pasteurianum CH4: The effects of butyrate addition and in situ butanol removal via membrane distillation. Biotechnology for Biofuels 2015:8(1):168. https://doi.org/10.1186/s13068-015-0352-6
Raganati F., et al. Butanol production by fermentation of fruit residues. Chemical Engineering Transactions 2016:49:229–234. https://doi.org/10.3303/CET1649039
Raganati F., et al. Butanol production by bioconversion of cheese whey in a continuous packed bed reactor. Bioresource Technology 2013:138:259–265. https://doi.org/10.1016/j.biortech.2013.03.180
Amiri H., Karimi K. Pretreatment and hydrolysis of lignocellulosic wastes for butanol production: Challenges and perspectives. Bioresource Technology 2018:270:702–721. https://doi.org/10.1016/J.BIORTECH.2018.08.117
Zetty-Arena A. M., et al. Towards enhanced n-butanol production from sugarcane bagasse hemicellulosic hydrolysate: Strain screening, and the effects of sugar concentration and butanol tolerance. Biomass and Bioenergy 2019:126:190–198. https://doi.org/10.1016/j.biombioe.2019.05.011
Kheyrandish M., et al. Direct production of acetone-butanol-ethanol from waste starch by free and immobilized Clostridium acetobutylicum. Fuel 2015:142:129–133. https://doi.org/10.1016/J.FUEL.2014.11.017
Plaza P. E., et al. Biobutanol production from brewer’s spent grain hydrolysates by Clostridium beijerinckii. Bioresource Technology 2017:244:166–174. https://doi.org/10.1016/J.BIORTECH.2017.07.139
Spalvins K., Ivanovs K., Blumberga D. Single cell protein production from waste biomass: Review of various agricultural by-products. Agronomy Research 2018:16:1493–1508. https://doi.org/10.15159/AR.18.129
Finco A. M., et al. Technological trends and market perspectives for production of microbial oils rich in omega-3. Critical Reviews in Biotechnology 2017:37(5):656–671. https://doi.org/10.1080/07388551.2016.1213221
Spalvins K., Blumberga D. Production of Fish Feed and Fish Oil from Waste Biomass Using Microorganisms: Overview of Methods Analyzing Resource Availability. Environmental and Climate Technologies 2018:22(1):149–164. https://doi.org/10.2478/rtuect-2018-0010
Napoli F., et al. Continuous lactose fermentation by Clostridium acetobutylicum - Assessment of acidogenesis kinetics. Bioresource Technology 2011:102(2):1608–1614. https://doi.org/10.1016/j.biortech.2010.09.004
Yadav J., et al. Mixed culture of Kluyveromyces marxianus and Candida krusei for single-cell protein production and organic load removal from whey. Bioresource Technology 2014:164:119–127. https://doi.org/10.1016/j.biortech.2014.04.069
Ghaly A., et al. Potential environmental and health impacts of high land application of cheese whey. American Journal of Agricultural and Biological Science 2007:2(2):106–117. https://doi.org/10.3844/ajabssp.2007.106.117
Yadav J., et al. Simultaneous single-cell protein production and COD removal with characterization of residual protein and intermediate metabolites during whey fermentation by K. marxianus. Bioprocess and Biosystems Engineering 2014:37(6):1017–1027. https://doi.org/10.1007/s00449-013-1072-6
Spalvins K., Vamza I., Blumberga D. Single Cell Oil Production from Waste Biomass: Review of Applicable Industrial By-Products. Environmental and Climate Technologies 2019:23(2):325–337. https://doi.org/10.2478/rtuect-2019-0071
Baral N. R., Shah A. Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn stover. Bioresource Technology 2017:232:331–343. https://doi.org/10.1016/j.biortech.2017.02.068
Zhang C., et al. Valorization of food waste for cost-effective reducing sugar recovery in a two-stage enzymatic hydrolysis platform. Energy 2020:208:118379. https://doi.org/10.1016/j.energy.2020.118379
Guardia L., et al. Apple Waste: A Sustainable Source of Carbon Materials and Valuable Compounds. ACS Sustainable Chemistry and Engineering 2019:7(20):17335–17343. https://doi.org/10.1021/acssuschemeng.9b04266
El Gnaoui Y., et al. Biological pre-hydrolysis and thermal pretreatment applied for anaerobic digestion improvement: Kinetic study and statistical variable selection. Cleaner Waste Systems 2022:2:100005. https://doi.org/10.1016/j.clwas.2022.100005
Saha B. C., et al. Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis. International Biodeterioration and Biodegradation 2016:109:29–35. https://doi.org/10.1016/J.IBIOD.2015.12.020
Chen H., Fu X. Industrial technologies for bioethanol production from lignocellulosic biomass. Renewable and Sustainable Energy Reviews 2016:57:468–478. https://doi.org/10.1016/j.rser.2015.12.069
Tu W. C., Hallett J. P. Recent advances in the pretreatment of lignocellulosic biomass. Current Opinion in Green and Sustainable Chemistry 2019:20:11–17. https://doi.org/10.1016/j.cogsc.2019.07.004
Spalvins K., Zihare L., Blumberga D. Single cell protein production from waste biomass: Comparison of various industrial by-products. Energy Procedia 2018:147:409–418. https://doi.org/10.1016/j.egypro.2018.07.111
Dolejš I., et al. Butanol production by immobilised Clostridium acetobutylicum in repeated batch, fed-batch, and continuous modes of fermentation. 2014:169:723–730. https://doi.org/10.1016/j.biortech.2014.07.039
Li S.Y., et al. Performance of batch, fed-batch, and continuous A-B-E fermentation with pH-control. Bioresource Technology 2010:102(5):4241–4250. https://doi.org/10.1016/j.biortech.2010.12.078
Niglio S., Marzocchella A., Rehmann L. Clostridial conversion of corn syrup to Acetone-Butanol-Ethanol (ABE) via batch and fed-batch fermentation. Heliyon 2019:5(3):1401. https://doi.org/10.1016/j.heliyon.2019.e01401
Sarchami T., Johnson E., Rehmann L. Optimization of fermentation condition favoring butanol production from glycerol by Clostridium pasteurianum DSM 525. Bioresource Technology 2016:208:73–80. https://doi.org/10.1016/j.biortech.2016.02.062
Lipovsky J., et al. Butanol production by Clostridium pasteurianum NRRL B-598 in continuous culture compared to batch and fed-batch systems. Fuel Processing Technology 2016:144:139–144. https://doi.org/10.1016/j.fuproc.2015.12.020
Mohapatra B. R., et al. Molecular Aspects of Microbial Dissimilatory Reduction of Radionuclides: A Review. Chapter 6.54. Comprehensive Biotechnology. Elsevier, 2011:709–718.
Bhatt A. K., Bhatia R. K., Bhalla T. C. Basic Biotechniques for Bioprocess and Bioentrepreneurship. Elsevier, 2023:485–495. https://doi.org/10.1016/C2017-0-01594-X
Dolejš I., et al. Butanol production by immobilised Clostridium acetobutylicum in repeated batch, fed-batch, and continuous modes of fermentation. Bioresource Technology 2014:169:723–730. https://doi.org/10.1016/J.BIORTECH.2014.07.039
Kourkoutas Y., et al. Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiology 2004:21(4):377–397. https://doi.org/10.1016/J.FM.2003.10.005
Bučko M., et al. Immobilization in biotechnology and biorecognition: From macro- to nanoscale systems. Chemical Papers 2012:66(11):983–998. https://doi.org/10.2478/S11696-012-0226-3/XML
Dolejš I., Rebroš M., Rosenberg M. Immobilisation of Clostridium spp. for production of solvents and organic acids. Chemical Papers 2014:68(1):1–14. https://doi.org/10.2478/s11696-013-0414-9
Friedl A., Qureshi N., Maddox I. S. Continuous acetone-butanol-ethanol (ABE) fermentation using immobilized cells of Clostridium acetobutylicum in a packed bed reactor and integration with product removal by pervaporation. Biotechnology and Bioengineering 1991:38(5):518–527. https://doi.org/10.1002/BIT.260380510
Survase S. A., Van Heiningen A., Granström T. Continuous bio-catalytic conversion of sugar mixture to acetone-butanol-ethanol by immobilized Clostridium acetobutylicum DSM 792. Applied Microbiology and Biotechnology 2012:93(6):2309–2316. https://doi.org/10.1007/s00253-011-3761-x
Zhuang W., et al. Immobilization of Clostridium acetobutylicum onto natural textiles and its fermentation properties. Microbial Biotechnology 2017:10(2):502–512. https://doi.org/10.1111/1751-7915.12557
Huang H. J., Ramaswamy S., Liu Y. Separation and purification of biobutanol during bioconversion of biomass. Separation and Purification Technology 2014:132:513–540. https://doi.org/10.1016/J.SEPPUR.2014.06.013
Qureshi N., et al. Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess and Biosystems Engineering 2005:27(4):215–222. https://doi.org/10.1007/s00449-005-0402-8
Kujawska A., et al. ABE fermentation products recovery methods—A review. Renewable and Sustainable Energy Reviews 2015:48:648–661. https://doi.org/10.1016/J.RSER.2015.04.028
Behera S., Konde K., Patil S. Methods for bio-butanol production and purification. Chapter 10 in Advances and Developments in Biobutanol Production. Elsevier, 2023:279–301.
Raganati F., et al. Bio-butanol recovery by adsorption/desorption processes. Separation and Purification Technology 2020:235:116145. https://doi.org/10.1016/J.SEPPUR.2019.116145
Kongjan P., et al. Chapter 18 - Butanol production from algal biomass by acetone-butanol-ethanol fermentation process. Clean Energy and Resources Recovery: Biomass Waste Based Biorefineries 2021:1:421–446. https://doi.org/10.1016/B978-0-323-85223-4.00014-2
Mailaram S., Maity S. K. Dual liquid-liquid extraction versus distillation for the production of bio-butanol from corn, sugarcane, and lignocellulose biomass: A techno-economic analysis using pinch technology. Fuel 2021:312:122932. https://doi.org/10.1016/j.fuel.2021.122932
Kubiczek A., Kamiński W. Liquid-liquid extraction in systems containing butanol and ionic liquids-a review. Chemical and Process Engineering - Inzynieria Chemiczna i Procesowa 2017:38(1):97–110. https://doi.org/10.1515/cpe-2017-0008
Ezeji T. C., Qureshi N., Blaschek H. P. Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World Journal of Microbiology & Biotechnology 2003:19:595–603.
Chen Y., et al. Enhancement of n-butanol production by in situ butanol removal using permeating–heating–gas stripping in acetone–butanol–ethanol fermentation. Bioresource Technology 2014:164:279–284. https://doi.org/10.1016/J.BIORTECH.2014.04.107
Woldemariam D., et al. Recovery of ethanol from scrubber-water by district heat-driven membrane distillation: Industrial-scale technoeconomic study. Renewable Energy 2018:128:484–494. https://doi.org/10.1016/J.RENENE.2017.06.009
Zhu H., et al. Fluorinated PDMS membrane with anti-biofouling property for in-situ biobutanol recovery from fermentation-pervaporation coupled process. Journal of Membrane Science 2020:609:118225. https://doi.org/10.1016/J.MEMSCI.2020.118225
Van Hecke W., et al. Prospects & potential of biobutanol production integrated with organophilic pervaporation – A techno-economic assessment. Applied Energy 2018:228:437–449. https://doi.org/10.1016/J.APENERGY.2018.06.113
Arregoitia-Sarabia C., et al. Polyether-block-amide thin-film composite hollow fiber membranes for the recovery of butanol from ABE process by pervaporation. Separation and Purification Technology 2021:279:119758. https://doi.org/10.1016/J.SEPPUR.2021.119758