European Commission. Global CO2 emissions rebound in 2021 after temporary reduction during COVID19 lockdown [Online]. [Accessed 19.01.2023]. Available: https://joint-research-centre.ec.europa.eu/jrc-news/global-co2-emissions-rebound-2021-after-temporary-reduction-during-covid19-lockdown-2022-10-14_en
Esposito E., et al. Simultaneous production of biomethane and food grade CO2 from biogas: an industrial case study. Energy Environ. Sci. 2019:12(1):281–289. https://doi.org/10.1039/C8EE02897D
European Commission. A European Green Deal [Online]. [Accessed 15.02.2023]. Available: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en
Han J., et al. Coal-fired power plant CCUS project comprehensive benefit evaluation and forecasting model study. J. Clean. Prod. 2023:385:135657. https://doi.org/10.1016/J.JCLEPRO.2022.135657
Guerrero-Lemus R., Martínez-Duart J. M. Renewable Energies and CO2: Cost Analysis, Environmental Impacts and Technological Trends. London: Springer, 2013:3.
Wang M., et al. Aldehyde end-capped CO2-based polycarbonates: a green synthetic platform for site-specific functionalization. Polym. Chem. 2022:13(12):1731–1738. https://doi.org/10.1039/D2PY00129B
Chen Q., et al. Opportunities of integrated systems with CO2 utilization technologies for green fuel & chemicals production in a carbon-constrained society. J. CO2 Util. 2016:14:1–9. https://doi.org/10.1016/J.JCOU.2016.01.004
Zang G., et al. Performance and cost analysis of liquid fuel production from H2 and CO2 based on the Fischer-Tropsch process. J. CO2 Util. 2021:46:101459. https://doi.org/10.1016/J.JCOU.2021.101459
Abd A. A., et al. Green route for biomethane and hydrogen production via integration of biogas upgrading using pressure swing adsorption and steam-methane reforming process. Renewable Energy 2023:210:64–78. https://doi.org/10.1016/j.renene.2023.04.041
Meng F., et al. Effects of hydroxyethyl group on monoethanolamine (MEA) derivatives for biomethane from biogas upgrading. Fuel 2022:325:124874. https://doi.org/10.1016/j.fuel.2022.124874
Luo L., et al. Environmental and economic analysis of renewable heating and cooling technologies coupled with biomethane utilization: A case study in Chongqing. Sustain. Energy Technol. Assessments 2023:56:102992. https://doi.org/10.1016/J.SETA.2022.102992
D’Adamo I., Ribichini M., Tsagarakis K. P. Biomethane as an energy resource for achieving sustainable production: Economic assessments and policy implications. Sustain. Prod. Consum. 2023:35:13–27. https://doi.org/10.1016/J.SPC.2022.10.014
Fubara T., Cecelja F., Yang A. Techno-economic assessment of natural gas displacement potential of biomethane: A case study on domestic energy supply in the UK. Chem. Eng. Res. Des. 2018:131:193–213. https://doi.org/10.1016/J.CHERD.2017.12.022
Ghiat I., et al. CO2 utilisation in agricultural greenhouses: A novel ‘plant to plant’ approach driven by bioenergy with carbon capture systems within the energy, water and food Nexus. Energy Convers. Manag. 2021:228:113668. https://doi.org/10.1016/J.ENCONMAN.2020.113668
Shirizadeh B., Quirion P. The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model. Energy 2022:255:124503. https://doi.org/10.1016/J.ENERGY.2022.124503
Keogh N., Corr D., Monaghan R. F. D. Biogenic renewable gas injection into natural gas grids: A review of technical and economic modelling studies. Renew. Sustain. Energy Rev. 2022:168:112818. https://doi.org/10.1016/J.RSER.2022.112818
Richards S. J., Al Zaili J. Contribution of encouraging the future use of biomethane to resolving sustainability and energy security challenges: The case of the UK. Energy Sustain. Dev. 2020:55:48–55. https://doi.org/10.1016/J.ESD.2019.12.003
Hamelin L., Møller H. B., Jørgensen U. Harnessing the full potential of biomethane towards tomorrow’s bioeconomy: A national case study coupling sustainable agricultural intensification, emerging biogas technologies and energy system analysis. Renew. Sustain. Energy Rev. 2021:138:110506. https://doi.org/10.1016/J.RSER.2020.110506
Sangannavar P. A., et al. Biomethane: a sustainable bioenergy source from potential waste effluents. Microbial Resource Technologies for Sustainable Development. Elsevier, 2022:195–212.
Latvijas Gaze. Latvijas Gāze includes initiatives for the development of biomethane production in the environmental policy of the company [Online]. [Accessed 18.01.2023]. Available: https://lg.lv/en/news/latvijas-gaze-includes-initiatives-for-the-development-of-biomethane-production-in-the-environmental-policy-of-the-company
Weinrich S., et al. Value of Batch Tests for Biogas Potential Analysis – Method comparison and challenges of substrate and efficiency evaluation of biogas plants. Paris: IEA Bioenergy, 2018.
Liebetrau J., Pfeiffer D., Thran D. Collection of Methods for Biogas. Methods to determine parameters for analysis purposes and Parameters that describe processes in the biogas sector. Leipzig, 2016.
Guilayn F., et al. Valorization of digestates from urban or centralized biogas plants: a critical review. Rev. Environ. Sci. Bio/Technology 2020:19(2):419–462. https://doi.org/10.1007/S11157-020-09531-3
Ayub A., et al. Amine-grafted mesoporous silica materials for single-stage biogas upgrading to biomethane. Chem. Eng. J. 2022:445:136497. https://doi.org/10.1016/J.CEJ.2022.136497
Panwar N. L., Kaushik S. C., Kothari S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev. 2011:15(3):1513–1524. https://doi.org/10.1016/J.RSER.2010.11.037
European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A resource-efficient Europe – Flagship initiative under the Europe 2020 Strategy. Brussels: EC, 2011.
Duran I., Rubiera F., Pevida C. Modeling a biogas upgrading PSA unit with a sustainable activated carbon derived from pine sawdust. Sensitivity analysis on the adsorption of CO2 and CH4 mixtures. Chemical Engineering Journal 2022:428:132564. https://doi.org/10.1016/j.cej.2021.132564
ArcGis. Valsts Zemes Dienesta dati: Pagastu robežas, 2021 (State land service data data: Parish borders, 2021) [Online]. Accessed 19.01.2023]. Available: https://www.arcgis.com/home/item.html?id=b76d9304b3ca467383e462e5dc945d9b
State Environmental Service. Atļauja B kategoijas piesārņojošai darbībai Nr . RE10IB0013 (Permit for category B polluting activity No. RE10IB0013.). Riga: VVD, 2022.
European Commission. Renewable Energy – Recast to 2030 (RED II) [Online]. [Accessed 15.01.2023]. Available: https://joint-research-centre.ec.europa.eu/welcome-jec-website/reference-regulatory-framework/renewable-energy-recast-2030-red-ii_en
Certifications Control Union. REDcert - Biomass for Energy - Certifications [Online]. [Accessed 17.01.2023]. Available: https://certifications.controlunion.com/en/certification-programs/certification-programs/redcert-biomass-for-energy
Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (recast). Off. J. Eur. Union 2018:L328/82.
Communication from the Commission on the practical implementation of the EU biofuels and bioliquids sustainability scheme and on counting rules for biofuels. Off. J. Eur. Union 2010:C160/53.