Have a personal or library account? Click to login

Revolutionizing the Building Envelope: A Comprehensive Scientific Review of Innovative Technologies for Reduced Emissions

Open Access
|Nov 2023

References

  1. IPCC. Climate Change 2021: The Physical Science Basis. 2021. [Online]. [Accessed: 10.03.2023]. Available: https://www.ipcc.ch/report/ar6/wg1/
  2. European commission. The European Green Deal. 2019. [Online]. [Accessed: 15.03.2023]. Available: https://eurlex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52019DC0640&from=EN
  3. Pakere I., Prodanuks T., Kamenders A., Veidenbergs I., Holler S., Villere A., Blumberga D. Ranking EU climate and energy policies. Env. Climate Technologies 2021:25(1):367–381. https://doi.org/10.2478/rtuect-2021-0027
  4. United nations. Global Status report for Buildings and Construction 2021. UN [Online]. [Accessed: 15.02.2023]. Available: https://globalabc.org/resources/publications/2021-global-status-report-buildings-and-construction
  5. BPIE. Towards a decarbonised eu building stock: expert views on the issues and challenges facing the transition Factsheet. 2018. [Online]. [Accessed: 15.03.2023]. Available: https://bpie.eu/wp-content/uploads/2018/10/NZE2050-factsheet_03.pdf
  6. Miezis M., Zvaigznitis K., Stancioff N., Soeftestad L. Climate change and buildings energy efficiency – the key role of residents. Environmental and Climate Technologies 2016:17(1):30–43. https://doi.org/10.1515/rtuect-2016-0004
  7. Shuja D., Gardezi S. S. S., Idrees M. R. Prospects of Transforming Conventional Commercial Buildings to Net Zero Energy Building-Balancing the Economic Aspects with Energy Patterns. Environmental and Climate Technologies 2021:25(1):990–1002. https://doi.org/10.2478/rtuect-2021-0075.
  8. Albatayneh A., Alterman D., Page A., Moghtaderi B. The Significance of Building Design for the Climate. Environmental and Climate Technologies 2018:22(1):165–178. https://doi.org/10.2478/rtuect-2018-0011
  9. Hayter S. J., Kandt A. Renewable Energy Applications for Existing Buildings Preprint Renewable Energy Applications for Existing Buildings. 2011. [Online]. Accessed: 15.03.2023]. Available: https://www.nrel.gov/docs/fy11osti/52172.pdf
  10. Hestnes A. G. Building Integration Of Solar Energy Systems. Solar Energy 1999:67(4–6):181–187. https://doi.org/10.1016/S0038-092X(00)00065-7
  11. Pakere I., Blumberga D. Solar Energy in Low Temperature District Heating. Environmental and Climate Technologies 2019:23(3):147–158. https://doi.org/10.2478/rtuect-2019-0085
  12. Abdou N., Mghouchi Y. El., Hamdaoui S., Mhamed M. Optimal Building Envelope Design and Renewable Energy Systems Size for Net-zero Energy Building in Tetouan (Morocco). Presented at 9th International Renewable and Sustainable Energy Conference (IRSEC). 2021. https://doi.org/10.1109/IRSEC53969.2021.9741188
  13. Zsembinszki G., Fernandez A. g., Cabeza L. E. Selection of the appropriate phase change material for two innovative compact energy storage systems in residential buildings. Applied Sciences 2020:10(6):2116. https://doi.org/10.3390/app10062116
  14. Batra U., Singhal S. Optimum level of insulation for energy efficient envelope of office buildings. International Journal of Env. Science and Technology 2017:14(11):2389–2398. https://doi.org/10.1007/s13762-017-1322-2
  15. Ibrahim M., Biwole P. H., Achard P., Wurtz E. Aerogel-Based Materials for Improving the Building Envelope’s Thermal Behavior: A Brief Review with a Focus on a New Aerogel-Based Rendering. In Sharma A., Kar S. K. (eds.), Energy Sustainability Through Green Energy 2015:163–188. https://doi.org/10.1007/978-81-322-2337-5_7
  16. Ruse A., Pubule J. The Boundaries of Scientific Innovation in the EU Green Deal Context. Environmental and Climate Technologies 2022:26(1):115–128. https://doi.org/10.2478/rtuect-2022-0010
  17. Attia S., Bilir S., Safy T., Struck C., Loonen R., Goia F. Current trends and future challenges in the performance assessment of adaptive façade systems. Energy and Buildings 2018:179:165–182. https://doi.org/10.1016/j.enbuild.2018.09.017
  18. Juaristi M., Gómez-Acebo T., Monge-Barrio A. Qualitative analysis of promising materials and technologies for the design and evaluation of Climate Adaptive Opaque Façades. Building and Environment 2018:144:482–501. https://doi.org/10.1016/j.buildenv.2018.08.028
  19. Pranckutė R. Web of Science (WoS) and Scopus: the titans of bibliographic information in today’s academic world. Publications 2021:9(1):12. https://doi.org/10.3390/publications9010012
  20. Vanaga R., Narbuts J., Freimanis R., Blumberga A. Laboratory Testing of Small Scale Solar Facade Module with Phase Change Material and Adjustable Insulation Layer. Energies 2022:15(3):1158. https://doi.org/10.3390/en15031158
  21. Narbuts J., Vanaga R., Freimanis R., Blumberga A. Laboratory Testing of Small-Scale Active Solar Façade Module. Environmental and Climate Technologies 2021:25(1):455–466. https://doi.org/10.2478/rtuect-2021-0033
  22. Vanaga R., Narbuts J., Freimanis R., Blumberga A. Laboratory Testing of Different Melting Temperature Phase Change Materials Under Four Season Conditions for Thermal Energy Storage in Building Envelope. Energy Proceedings 2021:22. https://doi.org/10.46855/energy-proceedings-9391
  23. Bumanis G., Bajare D. PCM Modified Gypsum Hempcrete with Increased Heat Capacity for Nearly Zero Energy Buildings. Environmental and Climate Technologies 2022:26(1):524–534. https://doi.org/10.2478/rtuect-2022-0040
  24. Rucevskis S., Akishin P., Korjakins A. Performance Evaluation of an Active PCM Thermal Energy Storage System for Space Cooling in Residential Buildings. Environmental and Climate Technologies 2019:23(2):74–89. https://doi.org/10.2478/rtuect-2019-0056
  25. Wu D., Rahim M., El Ganaoui M., Bennacer R., Djedjig R., Liu B. Dynamic hygrothermal behavior and energy performance analysis of a novel multilayer building envelope based on PCM and hemp concrete. Construction and Building Materials 2022:341:127739. https://doi.org/10.1016/j.conbuildmat.2022.127739
  26. Nguyen G. T., Hwang H. S., Lee J., Cha D. A., Park I. N-octadecane/fumed silica phase change composite as building envelope for high energy efficiency. Nanomaterials 2021:11(3):1–15. https://doi.org/10.3390/nano11030566
  27. Yang Y., Wu W., Fu S., Zhang H. Study of a novel ceramsite-based shape-stabilized composite phase change material (PCM) for energy conservation in buildings. Construction and Building Materials 2020:246:118479. https://doi.org/10.1016/j.conbuildmat.2020.118479
  28. Sakiyama N. R. M., Frick J., Stipetic M., Oertel T., Garrecht H. Hygrothermal performance of a new aerogel-based insulating render through weathering: Impact on building energy efficiency. Building and Environment 2021:202:108004. https://doi.org/10.1016/j.buildenv.2021.108004
  29. Karim A. N., Johansson P., Kalagasidis A. S. Knowledge gaps regarding the hygrothermal and long-term performance of aerogel-based coating mortars. Construction and Building Materials 2022:314:125602. https://doi.org/10.1016/j.conbuildmat.2021.125602
  30. Paulos J., Berardi U. Optimizing the thermal performance of window frames through aerogel-enhancements. Applied Energy 2020:266:114776. https://doi.org/10.1016/j.apenergy.2020.114776
  31. Yue X., Wu H., Zhang T., Yang D., Qiu F. Superhydrophobic waste paper-based aerogel as a thermal insulating cooler for building. Energy 2022:245:123287. https://doi.org/10.1016/j.energy.2022.123287
  32. Lei Q., Wang L., Xie H., Yu W. Active-passive dual-control smart window with thermochromic synergistic fluidic glass for building energy efficiency. Building and Environment 2022:222:109407. https://doi.org/10.1016/j.buildenv.2022.109407
  33. Lin Q., Zhang Y., Van Mieghem A., Chen Y. C., Yu N., Yang Y., Yin H. Design and experiment of a sun-powered smart building envelope with automatic control. Energy and Buildings 2020:223:110173. https://doi.org/10.1016/j.enbuild.2020.110173
  34. Ke Y., Tan Y., Feng C., Chen C., Lu Q., Xu Q., Wang T., Liu H., Liu X., Peng J., Long Y. Tetra-Fish-Inspired aesthetic thermochromic windows toward Energy-Saving buildings. Applied Energy 2022:315:119053. https://doi.org/10.1016/j.apenergy.2022.119053
  35. Rotas R., Fotopoulou M., Drosatos P., Rakopoulos D., Nikolopoulos N. Adaptive Dynamic Building Envelopes with Solar Power Components: Annual Performance Assessment for Two Pilot Sites. Energies 2023:16(5):2148. https://doi.org/10.3390/en16052148
  36. Čurpek J., Čekon M. Climate response of a BiPV façade system enhanced with latent PCM-based thermal energy storage. Renewable Energy 2020:152:368–384. https://doi.org/10.1016/j.renene.2020.01.070
  37. Koukelli C., Prieto A., Asut S. Kinetic solar envelope: Performance assessment of a shape memory alloy-based autoreactive façade system for urban heat island mitigation in Athens, Greece. Applied Sciences (Switzerland) 2022:12(1):82. https://doi.org/10.3390/app12010082
  38. Sadegh S. O., Gasparri E., Brambilla A., Globa A. Kinetic facades: An evolutionary-based performance evaluation framework. Journal of Building Engineering 2022:53:104408. https://doi.org/10.1016/j.jobe.2022.104408
  39. Pielichowska K., Pielichowski K. Phase change materials for thermal energy storage. Progress in Materials Science 2014:65:67–123. https://doi.org/10.1016/j.pmatsci.2014.03.005
  40. Lawag R. A., Ali H. M. Phase change materials for thermal management and energy storage: A review. Journal of Energy Storage 2022:55:105602. https://doi.org/10.1016/j.est.2022.105602
  41. van der Winden I. Phase Change Materials: Technology and Applications. New York: Nova, 2020.
  42. Hussein H., Abed A. H., Abdulmunem R. An experimental investigation of using aluminum foam matrix integrated with paraffin wax as a thermal storage material in a solar heater. Presented at the 2nd Sustainable & Renewable Energy Conference, Baghdad, Iraq. 2018.
  43. Buratti C. Translucent Silica Aerogel: Properties, Preparation and Applications. New York: Nova, 2019.
  44. Buratti C., Moretti E., Belloni E. Nanogel Windows for Energy Building Efficiency BT – Nano and Biotech Based Materials for Energy Building Efficiency. In: Pacheco Torgal F., Buratti C., Kalaiselvam S., Granqvist C. G., Ivanov V. (eds). Nano and Biotech Based Materials for Energy Building Efficiency. Springer, Cham. https://doi.org/10.1007/978-3-319-27505-5_3
  45. Lolli N., Andresen I. Aerogel vs. argon insulation in windows: A greenhouse gas emissions analysis. Building and Environment 2016:101:64–76. https://doi.org/10.1016/j.buildenv.2016.03.001
  46. Jelle B. P., Baetens R., Gustavsen A. Chapter 45 - Aerogel Insulation for Building Applications. In: Levy D., Zayat M. The Sol-Gel Handbook. Wiley-VCH Verlag GmbH & Co. KGaA, 2015. https://doi.org/10.1002/9783527670819.ch45
  47. Luo Y., Zhang L., Bozlar M., Liu Z., Guo H., Meggers F. Active building envelope systems toward renewable and sustainable energy. Renewable and Sustainable Energy Reviews 2019:104:470–491. https://doi.org/10.1016/j.rser.2019.01.005
  48. Shahin H. S. M. Adaptive building envelopes of multistory buildings as an example of high performance building skins. Alexandria Engineering Journal 2019:58(1):345–352. https://doi.org/10.1016/j.aej.2018.11.013
  49. Tabadkani A., Roetzel A., Li H. X., Tsangrassoulis A. Design approaches and typologies of adaptive facades: A review. Automation in Construction 2021:121:103450. https://doi.org/10.1016/j.autcon.2020.103450
  50. Voigt M. P., Chwalek K., Roth D., Kreimeyer M., Blandini L. The integrated design process of adaptive façades – A comprehensive perspective. Journal of Building Engineering 2023:67:106043. https://doi.org/10.1016/j.jobe.2023.106043
  51. Mols T., Blumberga A. Inverse modelling of climate adaptive building shells. System dynamics approach. Environmental and Climate Technologies 2020:24(2):170–177. https://doi.org/10.2478/rtuect-2020-0064
DOI: https://doi.org/10.2478/rtuect-2023-0053 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 724 - 737
Submitted on: Apr 12, 2023
Accepted on: Oct 11, 2023
Published on: Nov 13, 2023
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2023 Jānis Narbuts, Ruta Vanaga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.