Have a personal or library account? Click to login

Twinned Renewable Energy Accumulation: Case of Wind and Hydro Energy

Open Access
|Nov 2023

References

  1. Tian X., An C., Chen Z. The role of clean energy in achieving decarbonization of electricity generation, transportation, and heating sectors by 2050: A meta-analysis review. Renewable and Sustainable Energy Reviews 2023:182:113404. https://doi.org/10.1016/j.rser.2023.113404
  2. Jiang B., Raza M. Y. Research on China’s renewable energy policies under the dual carbon goals: A political discourse analysis. Energy Strategy Reviews 2023:48:101118. https://doi.org/10.1016/j.esr.2023.101118
  3. Azarpour A., Mohammadzadeh O., Rezaei N., Zendehboudi S. Current status and future prospects of renewable and sustainable energy in North America: Progress and challenges. Energy Conversion and Management 2022:269:115945. https://doi.org/10.1016/j.enconman.2022.115945
  4. Mitali J., Dhinakaran S., Mohamad A. A. Energy storage systems: a review. Energy Storage and Saving 2022:1(3):166–216. https://doi.org/10.1016/j.enss.2022.07.002
  5. Lowe R. J., Drummond P. Solar, wind and logistic substitution in global energy supply to 2050 – Barriers and implications. Renewable and Sustainable Energy Reviews 2022:153:111720. https://doi.org/10.1016/j.rser.2021.111720
  6. International Renewable Energy Agency (IRENA). Renewable Capacity Statistics 2019. Mar. 31, 2019. [Online]. [Accessed: 02.07.2023]. Available: https://www.irena.org/publications/2019/Mar/Renewable-Capacity-Statistics-2019
  7. McKenna R., et al. High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs. Renewable Energy 2022:182:659–684. https://doi.org/10.1016/j.renene.2021.10.027
  8. Msigwa G., Ighalo J. O., Yap P.-S. Considerations on environmental, economic, and energy impacts of wind energy generation: Projections towards sustainability initiatives. Science of The Total Environment 2022:849:157755. https://doi.org/10.1016/j.scitotenv.2022.157755
  9. Pietzcker R. C., Stetter D., Manger S., Luderer G. Using the sun to decarbonize the power sector: The economic potential of photovoltaics and concentrating solar power. Applied Energy 2014:135:704–720. https://doi.org/10.1016/j.apenergy.2014.08.011
  10. Jafari M., Botterud A., Sakti A. Decarbonizing power systems: A critical review of the role of energy storage. Renewable and Sustainable Energy Reviews 2022:158:112077. https://doi.org/10.1016/j.rser.2022.112077
  11. US EPA. Electricity Storage, 2022. [Online]. [Accessed: 27.06.2023]. Available: https://www.epa.gov/energy/electricity-storage
  12. Mahmoud M., Ramadan M., Olabi A.-G., Pullen K., Naher S. A review of mechanical energy storage systems combined with wind and solar applications. Energy Conversion and Management 2020:210:112670. https://doi.org/10.1016/j.enconman.2020.112670
  13. Li J., et al. How to make better use of intermittent and variable energy? A review of wind and photovoltaic power consumption in China. Renewable and Sustainable Energy Reviews 2021:137:110626. https://doi.org/10.1016/j.rser.2020.110626
  14. Jasiūnas J., Lund P. D., Mikkola J. Energy system resilience – A review. Renewable and Sustainable Energy Reviews 2021:150:111476. https://doi.org/10.1016/j.rser.2021.111476
  15. Rana M. M., et al. Applications of energy storage systems in power grids with and without renewable energy integration – A comprehensive review. Journal of Energy Storage 2023:68:107811. https://doi.org/10.1016/j.est.2023.107811
  16. AL Shaqsi A. Z., Sopian K., Al-Hinai A. Review of energy storage services, applications, limitations, and benefits. Energy Reports 2020:6(S7):288–306. https://doi.org/10.1016/j.egyr.2020.07.028
  17. Michaelides E. E. Alternative Energy Sources. Berlin, Heidelberg: Springer, 2012. https://doi.org/10.1007/978-3-642-20951-2
  18. Ali S., Stewart R. A., Sahin O. Drivers and barriers to the deployment of pumped hydro energy storage applications: Systematic literature review. Cleaner Engineering and Technology 2021:5:100281. https://doi.org/10.1016/j.clet.2021.100281
  19. Ju C., Ding T., Jia W., Mu C., Zhang H., Sun Y. Two-stage robust unit commitment with the cascade hydropower stations retrofitted with pump stations. Applied Energy 2023:334:120675. https://doi.org/10.1016/j.apenergy.2023.120675
  20. Toufani P., Nadar E., Kocaman A. S. Operational benefit of transforming cascade hydropower stations into pumped hydro energy storage systems. Journal of Energy Storage 2022:51:104444. https://doi.org/10.1016/j.est.2022.104444
  21. Zhang J., Cheng C., Yu S., Shen J., Wu X., Su H. Preliminary feasibility analysis for remaking the function of cascade hydropower stations to enhance hydropower flexibility: A case study in China. Energy 2022:260:125163. https://doi.org/10.1016/j.energy.2022.125163
  22. Mahfoud R. J., Alkayem N. F., Zhang Y., Zheng Y., Sun Y., Alhelou H. H. Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives. Renewable and Sustainable Energy Reviews 2023:178:113267. https://doi.org/10.1016/j.rser.2023.113267
  23. Nadeem F., Hussain S. M. S., Tiwari P. K., Goswami A. K., Ustun T. S. Comparative Review of Energy Storage Systems, Their Roles, and Impacts on Future Power Systems. IEEE Access 2019:7:4555–4585. https://doi.org/10.1109/ACCESS.2018.2888497
  24. Rehman S., Al-Hadhrami L. M., Alam Md. M. Pumped hydro energy storage system: A technological review. Renewable and Sustainable Energy Reviews 2015:44:586–598. https://doi.org/10.1016/j.rser.2014.12.040
  25. Pérez-Díaz J. I., Chazarra M., García-González J., Cavazzini G., Stoppato A. Trends and challenges in the operation of pumped-storage hydropower plants. Renewable and Sustainable Energy Reviews 2015:44:767–784. https://doi.org/10.1016/j.rser.2015.01.029
  26. Hoffstaedt J. P., et al. Low-head pumped hydro storage: A review of applicable technologies for design, grid integration, control and modelling. Renewable and Sustainable Energy Reviews 2022:158:112119. https://doi.org/10.1016/j.rser.2022.112119
  27. Javed M. S., Ma T., Jurasz J., Amin M. Y. Solar and wind power generation systems with pumped hydro storage: Review and future perspectives. Renewable Energy 2020:148:176–192. https://doi.org/10.1016/j.renene.2019.11.157
  28. Wang Z., Fang G., Wen X., Tan Q., Zhang P., Liu Z. Coordinated operation of conventional hydropower plants as hybrid pumped storage hydropower with wind and photovoltaic plants. Energy Conversion and Management 2023:277:116654. https://doi.org/10.1016/j.enconman.2022.116654
  29. Liu J., Ma T., Wu H., Yang H. Study on optimum energy fuel mix for urban cities integrated with pumped hydro storage and green vehicles. Applied Energy 2023:331:120399. https://doi.org/10.1016/j.apenergy.2022.120399
  30. Zhao Z., et al. Stability and efficiency performance of pumped hydro energy storage system for higher flexibility. Renewable Energy 2022:199:1482–1494. https://doi.org/10.1016/j.renene.2022.09.085
  31. Augstsprieguma tikls AS (AST). Latvian electricity market overview. April 2023. [Online]. [Accessed: 04.07.2023]. Available: https://ast.lv/en/electricity-market-review
  32. Latvenergo AS. Generation. Latvenergo. [Online]. [Accessed: 10.07.2023]. Available: https://latvenergo.lv/en/parmums/razosana
  33. Lacal A. R., Fitzgerald N., Leahy P. Pumped-hydro Energy Storage: Potential for Transformation from Single Dams. JRC Publications Repository 2012. [Online]. [Accessed: 27.06.2023]. Available: https://publications.jrc.ec.europa.eu/repository/handle/JRC68678
  34. Zoss T., Karklina I., Blumberga D. Power to Gas and Pumped Hydro Storage Potential in Latvia. Energy Procedia 2016:95:528–535. https://doi.org/10.1016/j.egypro.2016.09.080
  35. Latvian Wind Energy Association. Wind energy for Latvia’s future. WEA, Aug. 21, 2021. [Online]. [Accessed: 16.08.2023]. Available: https://wea.lv/en/
  36. WindEurope. Wind energy in Europe. 2020 Statistics and the outlook for 2021–2025. [Online]. [Accessed: 17.08.2023]. Available: https://s1.eestatic.com/2021/02/24/actualidad/210224_windeurope_combined_2020_stats.pdf
  37. European Commission. Technical support for RES policy development and implementation – simplification of permission and administrative procedures for RES installations (RES Simplify): final report. LU: Publications Office of the European Union, 2023. https://data.europa.eu/doi/10.2833/894296
  38. Legal Acts of the Republic of Latvia. Law on the Facilitated Procedures for the Construction of the Energy Supply Buildings Required for the Promotion of Energy Security and Autonomy. [Online]. [Accessed: 17.08.2023]. Available: https://likumi.lv/doc.php?id=336089
  39. State Environmental Service. Republic of Latvia, VVD. Tehniskie noteikumi. (Technical regulations). [Online]. [Accessed: 17.08.2023]. Available: https://registri.vvd.gov.lv/izsniegtie-tehniskienoteikumi/?company_name=&company_code=&collapsed=false&action=93&CLS_Territory_ID=&CLS_Territory_ID_autocomplete=&address=&perm_date_from=&perm_date_to=&s=1 (accessed Aug. 17, 2023). (In Latvian).
  40. Statista. Latvia: onshore wind energy capacity 2022. [Online]. [Accessed: 08.07.2023]. Available: https://www.statista.com/statistics/868479/onshore-wind-energy-capacity-in-latvia/
  41. Sadales tikls AS. Solar power boom in Latvia: nearly 500 newly connected micro-generators a month. [Online]. [Accessed: 08.07.2023]. Available: https://sadalestikls.lv/en/aktuali/solar-power-boom-latvia-nearly-500-newly-connected-micro-generators-month
  42. Atbalsta programma atjaunojamo energoresursu izmantošanai mājsaimniecībās. (Support programme for the use of renewable energy sources in households). Ministry of Environmental Protection and Regional Development of the Republic of Latvia. [Online]. [Accessed: 08.07.2023]. Available: https://www.varam.gov.lv/lv/atbalsta-programmaatjaunojamo-energoresursu-izmantosanai-majsaimniecibas (In Latvian).
  43. Sadales tikls AS. Reserved capacity of solar power plants reaches 900 MW. [Online]. [Accessed: 10.07.2023]. Available: https://sadalestikls.lv/en/aktuali/Reserved-capacity-of-solar-power-plants-reaches-900MW
  44. LWEA: Unlocking the potential of Latvian offshore wind. Baltic Wind. [Online]. [Accessed: 10.07.2023]. Available: https://balticwind.eu/lwea-unlocking-the-potential-of-latvian-offshore-wind/
  45. National Energy and Climate Plan of Latvia 2021–2030. [Online]. [Accessed: 10.07.2023]. Available: https://energy.ec.europa.eu/system/files/2019-03/ec_courtesy_translation_lv_necp_0.pdf
  46. New law reserves 2% of German land area for onshore wind by 2032. [Online]. [Accessed: 17.08.2023]. Available: https://www.euractiv.com/section/electricity/news/new-law-reserves-2-of-german-land-area-for-onshore-wind-by-2032/
  47. WindBG. Act on the Determination of Land Requirements for Onshore Wind Turbines. [Online]. [Accessed: 17.08.2023]. Available: https://www.gesetze-im-internet.de/windbg/BJNR135310022.html
  48. Ming Z., Kun Z., Liang W. Study on unit commitment problem considering wind power and pumped hydro energy storage. International Journal of Electrical Power & Energy Systems 2014:63:91–96. https://doi.org/10.1016/j.ijepes.2014.05.047
  49. Pérez-Díaz J. I., Chazarra M., García-González J., Cavazzini G., Stoppato A. Trends and challenges in the operation of pumped-storage hydropower plants. Renewable and Sustainable Energy Reviews 2015:44:767–784. https://doi.org/10.1016/j.rser.2015.01.029
DOI: https://doi.org/10.2478/rtuect-2023-0051 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 696 - 710
Submitted on: Jul 5, 2023
Accepted on: Oct 9, 2023
Published on: Nov 7, 2023
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2023 Katarina Brence, Edgars Kudurs, Kārlis Valters, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.