Have a personal or library account? Click to login

Theoretical Foundations of Gas Hydrate Synthesis Intensification

Open Access
|Nov 2023

References

  1. Koh C. A., et al. State of the art: Natural gas hydrates as a natural resource. J. Nat. Gas Sci. Eng. 2012:8:132–138. https://doi.org/10.1016/j.jngse.2012.01.005
  2. Pavlenko A. M. Self-preservation Effect of Gas Hydrates. Roc. Och. Srod. 2021:23:346–355. https://doi.org/10.54740/ros.2021.023
  3. Boswell R., et al. 6 - Natural Gas Hydrates: Status of Potential as an Energy Resource. Future Energy (Third Edition). Sustainable and Clean Options for our Planet. Elsevier, 2020:111–131. https://doi.org/10.1016/B978-0-08-102886-5.00006-2
  4. Boswell R., Collett T. S. Current perspectives on gas hydrate resources. En. Env. Sci. 2011:4:1045–1528. https://doi.org/10.1039/C0EE00203H
  5. Zhao J., et al. Analyzing the process of gas production for natural gas hydrate using depressurization. Appl. En. 2015:142:125–134. https://doi.org/10.1016/j.apenergy.2014.12.071
  6. Kiran B. S., et al. Experimental investigations on tetrahydrofuran-methanewater system: Rapid methane gas storage in hydrates. Oil Gas Sci. Technol.-Rev. IFP Energ. Nouv. 2019:74:12. https://doi.org/10.2516/ogst/2018092
  7. Pavlenko A. M. Thermodynamic Features of the Intensive Formation of Hydrocarbon Hydrates. Energies 2020:13(13):3396. https://doi.org/10.3390/en13133396
  8. Veluswamy H. P., et al. An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application. Appl. En. 2017:188:190–199. https://doi.org/10.1016/j.apenergy.2016.12.002
  9. Pavlenko A. M., Koshlak H. Application of thermal and cavitation effects for heat and mass transfer process intensification in multicomponent liquid media. Energies 2021:14(23):7996. https://doi.org/10.3390/en14237996
  10. Kutnyi B. A. Thermodynamic basis of synthesis of gas hydrates: monograph (Termodynamichni osnovy syntezu hazovykh hidrativ: monohrafiia.). Ivano-Frankivsk: Vydavnytstvo IFNTUNH, 2019. (in Ukrainian)
  11. Sowjanya Y., Prasad P. S. R. Formation kinetics & phase stability of double hydrates of C4H8O and CO2/CH4: A comparison with pure systems. J. Nat. Gas Sc. Eng. 2014:18:58–63. https://doi.org/10.1016/j.jngse.2014.02.001
  12. Koshlak, H., Pavlenko, A. Method of formation of thermophysical properties of porous materials. Roc. Och. Srod. 2019:21(2):1253–1262.
  13. Delahaye A., et al. Effect of THF on equilibrium pressure and dissociation enthalpy of CO2 hydrates applied to secondary refrigeration. Ind. Eng. Chem. Res. 2006:45(1):391–397. https://doi.org/10.1021/ie050356p
  14. Lang X., Fan S., Wang Y. Intensification of methane and hydrogen storage in clathrate hydrate and future prospect. J. Nat. Gas Chem. 2010:19(3):203–209. https://doi.org/10.1016/S1003-9953(09)60079-7
  15. Pavlenko A. M. Energy conversion in heat and mass transfer processes in boiling emulsions. Therm. Scien. Eng. Prog. 2019:15:100439. https://doi.org/10.1016/j.tsep.2019.100439
  16. Liu Y., et al. Methane storage in a hydrated form as promoted by leucines for possible application to natural gas transportation and storage. En. Tech. 2015:3(8):815–819. https://doi.org/10.1002/ente.201500048
  17. Xu H., et al. Decomposition characteristics of natural gas hydrates in hydraulic lifting pipelines. Nat. Gas Ind. B 2019:6(2):159–167. https://doi.org/10.1016/j.ngib.2018.07.005
  18. Zhou X., et al. Recyclable and efficient hydrate-based CH4 storage strengthened by fabrics. Appl. En. 2023:336:120820. https://doi.org/10.1016/j.apenergy.2023.120820
  19. Pavlenko A. M., Koshlak H. Production of porous material with projected thermophysical characteristics. Metal. Min. Ind. 2015:7(1):123–127.
  20. Liu Z., et al. Study on the characteristics of hydrate formation in HSB solution: Focused on the micro-morphologies. Energy 2022:244(B):123149. https://doi.org/10.1016/j.energy.2022.123149
  21. Veluswamy H. P., et al. A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates. Appl. En. 2018:216(C):262–285. https://doi.org/10.1016/j.apenergy.2018.02.059
  22. Pahlavanzadeh H., et al. Gas Hydrate Phase Equilibrium Data for the CO2 + TBPB + THF + Water System. J. Chem. Eng. Data 2022:67(9):2792–2799. https://doi.org/10.1021/acs.jced.2c00282
  23. Jin Y., et al. Growth of methane clathrate hydrates in porous media. Energ. Fuel 2012:26(4):2242–2247. https://doi.org/10.1021/ef3001357
  24. Siazik J., Malcho M. Accumulation of primary energy into natural gas hydrates. Proc. Eng. 2017:192:782–787. https://doi.org/10.1016/j.proeng.2017.06.135
  25. Nguyen N. N., et al. “Liquid-like” Water in Clathrates Induced by Host–Guest Hydrogen Bonding. J. Phys. Chem. C 2021:125(28):15751–15757. https://doi.org/10.1021/acs.jpcc.1c05531
  26. Pavlenko A. M., Koshlak H. A New Method for the Rapid Synthesis of Gas Hydrates for their Storage and Transportation. Env. Clim. Tech. 2022:26(1):199–212. https://doi.org/10.2478/rtuect-2022-0016
DOI: https://doi.org/10.2478/rtuect-2023-0049 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 666 - 682
Submitted on: Apr 2, 2023
Accepted on: Aug 22, 2023
Published on: Nov 6, 2023
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2023 Bogdan Kutnyi, Anatoliy Pavlenko, Oleksandra Cherednikova, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.