References
- IRENA. Renewable Energy Agency, Green hydrogen: A guide to policy making. 2020. [Online]. [Accessed: 09.01.2023]. Available: www.irena.org
- Böhm H., Moser S., Puschnigg S., Zauner A. Power-to-hydrogen & district heating: Technology-based and infrastructure-oriented analysis of (future) sector coupling potentials. Int J Hydrogen Energy 2021:46(63):31938–31951. https://doi.org/10.1016/j.ijhydene.2021.06.233
- EUROPEAN COMMISSION. A hydrogen strategy for a climate-neutral Europe. 2020. Accessed: Jan. 09, 2023. [Online]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0301&from=LV
- European commission. A plan to rapidly reduce dependence on Russian fossil fuels and fast forward the green transition. 2022. [Online]. [Accessed: 09.01.2023]. Available: https://ec.europa.eu/commission/presscorner/detail/en/ip_22_3131
- Palys M. J., Daoutidis P. Power-to-X: A review and perspective. Comput Chem Eng 2022:165:107948. https://doi.org/10.1016/j.compchemeng.2022.107948
- Hermesmann M., Grübel K., Scherotzki L., Müller T. E. Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen. Renewable and Sustainable Energy Reviews 2021:138:110644. https://doi.org/10.1016/j.rser.2020.110644
- Incer-Valverde J., Patiño-Arévalo L. J., Tsatsaronis G., Morosuk T. Hydrogen-driven Power-to-X: State of the art and multicriteria evaluation of a study case. Energy Convers Manag 2022:266:115814. https://doi.org/10.1016/j.enconman.2022.115814
- Sorrenti I., Harild Rasmussen T. B., You S., Wu Q. The role of power-to-X in hybrid renewable energy systems: A comprehensive review. Renewable and Sustainable Energy Reviews 2022:165:112380. https://doi.org/10.1016/j.rser.2022.112380
- National Grid. One of the US’ first green hydrogen blending projects launches on Long Island. Dec. 15, 2021. [Online]. [Accessed: 20.02.2023]. Available: https://www.nationalgrid.com/stories/journey-to-net-zero-stories/hygrid-green-hydrogen-blending-project-launches
- Latõšov E., Pakere I., Murauskaite L., Volkova A. Impact of Grid Gas Requirements on Hydrogen Blending Levels. Environmental and Climate Technologies 2021:25(1):688–699. https://doi.org/10.2478/rtuect-2021-0052
- Riga Technical University. Technology readiness level. [Online]. [Accessed: 29.07.2023]. Available: https://www.rtu.lv/en/innovations/for-researchers/technology-readiness-levels
- Arsad A. Z., et al. Hydrogen electrolyser for sustainable energy production: A bibliometric analysis and future directions. Int J Hydrogen Energy 2023:48(13):4960–4983. https://doi.org/10.1016/j.ijhydene.2022.11.023
- Maier M., Smith K., Dodwell J., Hinds G., Shearing P. R., Brett D. J. L. Mass transport in PEM water electrolysers: A review. Int J Hydrogen Energy 2022:47(1):30–56. https://doi.org/10.1016/j.ijhydene.2021.10.013
- Mamlouk M. 4.19 - Alkaline Anion Exchange Membrane (AEM) Water Electrolysers—Current/Future Perspectives in Electrolysers for Hydrogen. Comprehensive Renewable Energy 2022:4:473–504. https://doi.org/10.1016/B978-0-12-819727-1.00103-5
- Grigoriev S. A., Fateev V. N., Millet P. 4.18 - Alkaline Electrolysers. Comprehensive Renewable Energy 2022:4:459–472. https://doi.org/10.1016/B978-0-12-819727-1.00024-8
- Hermesmann M., Müller T. E. Green, Turquoise, Blue, or Grey? Environmentally friendly Hydrogen Production in Transforming Energy Systems. Prog Energy Combust Sci 2022:90:100996. https://doi.org/10.1016/j.pecs.2022.100996
- Ayodele T. R., Munda J. L. Potential and economic viability of green hydrogen production by water electrolysis using wind energy resources in South Africa. Int J Hydrogen Energy 2019:44(33):17669–17687. https://doi.org/10.1016/j.ijhydene.2019.05.077
- Matute G., Yusta J. M., Naval N. Techno-economic model and feasibility assessment of green hydrogen projects based on electrolysis supplied by photovoltaic PPAs. Int J Hydrogen Energy 2023:48(13):5053–5068. https://doi.org/10.1016/j.ijhydene.2022.11.035
- Matute G., Yusta J. M., Beyza J., Monteiro C. Optimal dispatch model for PV-electrolysis plants in self-consumption regime to produce green hydrogen: A Spanish case study. Int J Hydrogen Energy 2022:47(60):25202–25213. https://doi.org/10.1016/j.ijhydene.2022.05.270
- Hofrichter A., Rank D., Heberl M., Sterner M. Determination of the optimal power ratio between electrolysis and renewable energy to investigate the effects on the hydrogen production costs. Int J Hydrogen Energy 2023:48(5):1651–1663. https://doi.org/10.1016/j.ijhydene.2022.09.263
- Gallardo F. I., Monforti Ferrario A., Lamagna M., Bocci E., Astiaso Garcia D., Baeza-Jeria T. E. A Techno-Economic Analysis of solar hydrogen production by electrolysis in the north of Chile and the case of exportation from Atacama Desert to Japan. Int J Hydrogen Energy 2021:46(26):13709–13728. https://doi.org/10.1016/j.ijhydene.2020.07.050
- Nami H., Rizvandi O. B., Chatzichristodoulou C., Hendriksen P. V., Frandsen H. L. Techno-economic analysis of current and emerging electrolysis technologies for green hydrogen production. Energy Convers Manag 2022:269:116162. https://doi.org/10.1016/j.enconman.2022.116162
- Lee B., et al. Integrative techno-economic and environmental assessment for green H2 production by alkaline water electrolysis based on experimental data. J Environ Chem Eng 2021:9(6):106349. https://doi.org/10.1016/j.jece.2021.106349
- Jang D., Kim J., Kim D., Han W. B., Kang S. Techno-economic analysis and Monte Carlo simulation of green hydrogen production technology through various water electrolysis technologies. Energy Convers Manag 2022:258:115499. https://doi.org/10.1016/j.enconman.2022.115499
- Kim H., Choe C., Lee A., Lim H. Application of green hydrogen with theoretical and empirical approaches of alkaline water electrolysis: Life cycle-based techno economic and environmental assessments of renewable urea synthesis. Int J Hydrogen Energy 2023:48(43):16148–16158. https://doi.org/10.1016/j.ijhydene.2023.01.062
- Gerloff N. Comparative Life-Cycle-Assessment analysis of three major water electrolysis technologies while applying various energy scenarios for a greener hydrogen production. J Energy Storage 2021:43:102759. https://doi.org/10.1016/j.est.2021.102759
- Lotrič A., Sekavčnik M., Kuštrin I., Mori M. Life-cycle assessment of hydrogen technologies with the focus on EU critical raw materials and end-of-life strategies. Int J Hydrogen Energy 2021:46(16):10143–10160. https://doi.org/10.1016/j.ijhydene.2020.06.190
- Fan J. L., Yu P., Li K., Xu M., Zhang X. A levelized cost of hydrogen (LCOH) comparison of coal-to-hydrogen with CCS and water electrolysis powered by renewable energy in China. Energy 2022:242:123003. https://doi.org/10.1016/j.energy.2021.123003
- Yang Y., et al. The scheduling of alkaline water electrolysis for hydrogen production using hybrid energy sources. Energy Convers Manag 2022:257:115408. https://doi.org/10.1016/J.ENCONMAN.2022.115408
- Hazrat M. A., Rasul M. G., Jahirul M. I., Chowdhury A. A., Hassan N. M. S. Techno-economic analysis of recently improved hydrogen production pathway and infrastructure. Energy Reports 2022:8(S16):836–844. https://doi.org/10.1016/j.enconman.2022.115408
- PEM ElectroLYsers FOR operation with OFFgrid renewable installations. 2019. [Online]. [Accessed: 20.02.2023]. Available: https://cordis.europa.eu/project/id/700359
- Gago A. Anion Exchange Membrane Water Electrolyser. [Online]. [Accessed: 20.02.2023]. Available: https://newely.eu/project
- Henkensmeier D., Najibah M., Harms C., Žitka J., Hnát J., Bouzek K. Overview: State-of-the Art Commercial Membranes for Anion Exchange Membrane Water Electrolysis. Journal of Electrochemical Energy Conversion and Storage 2021:18(2):024001. https://doi.org/10.1115/1.4047963
- Najibah M., et al. PBI nanofiber mat-reinforced anion exchange membranes with covalently linked interfaces for use in water electrolysers. J Memb Sci 2021:640:119832. https://doi.org/10.1016/j.memsci.2021.119832
- Plevová M., Hnát J., Žitka J., Pavlovec L., Otmar M., Bouzek K. Optimization of the membrane electrode assembly for an alkaline water electrolyser based on the catalyst-coated membrane. J Power Sources 2022:539:231476. https://doi.org/10.1016/j.jpowsour.2022.231476
- Khalid H., Najibah M., Park H. S., Bae C., Henkensmeier D. Properties of Anion Exchange Membranes with a Focus on Water Electrolysis. Membranes 2022:12(10). https://doi.org/10.3390/membranes12100989
- Najibah M., et al. Pre-swelling of FAA3 membranes with water-based ethylene glycol solution to minimize dimensional changes after assembly into a water electrolyser: Effect on properties and performance. J Memb Sci 2023:670:121344. https://doi.org/10.1016/j.memsci.2022.121344
- Universite De Montpellier. Highly performing proton exchange membrane water electrolysers with reinforced membranes for efficient hydrogen generation, 2022. (Accessed Feb. 20, 2023). https://cordis.europa.eu/project/id/875573
- H100 Fife, “H100 Fife.” https://www.h100fife.co.uk (accessed Feb. 20, 2023).
- Petrollese M., Concas G., Lonis F., Cocco D. Techno-economic assessment of green hydrogen valley providing multiple end-users. Int J Hydrogen Energy 2022:47(57):24121–24135. https://doi.org/10.1016/j.ijhydene.2022.04.210
- Bellotti D., Rivarolo M., Magistri L. A comparative techno-economic and sensitivity analysis of Power-to-X processes from different energy sources. Energy Convers Manag 2022:260:115565. https://doi.org/10.1016/j.enconman.2022.115565
- Dahiru A. R., Vuokila A., Huuhtanen M. Recent development in Power-to-X: Part I - A review on techno-economic analysis. J Energy Storage 2022:56(PA):105861. https://doi.org/10.1016/j.est.2022.105861
- Shiva Kumar S., Lim H. An overview of water electrolysis technologies for green hydrogen production. Energy Reports 2022:8:13793–13813. https://doi.org/10.1016/j.egyr.2022.10.127
- Ghafoori M. S., Loubar K., Marin-Gallego M., Tazerout M. Techno-economic and sensitivity analysis of biomethane production via landfill biogas upgrading and power-to-gas technology. Energy 2022:239(PB):122086. https://doi.org/10.1016/j.energy.2021.122086.
- Wai S. H., Ota Y., Nishioka K. Performance analysis of sabatier reaction on direct hydrogen inlet rates based on solar-to-gas conversion system. Int J Hydrogen Energy 2021:46(53):26801–26808. https://doi.org/10.1016/j.ijhydene.2021.05.156
- Zhang S., Zhang N., Smith R., Wang W. A zero carbon route to the supply of high-temperature heat through the integration of solid oxide electrolysis cells and H2–O2 combustion. Renewable and Sustainable Energy Reviews 2022:167:112816. https://doi.org/10.1016/j.rser.2022.112816
- Gudmundsson O., Thorsen J. E. Source-to-sink efficiency of blue and green district heating and hydrogen-based heat supply systems. Smart Energy 2022:6:100071. https://doi.org/10.1016/j.segy.2022.100071
- Burrin D., Roy S., Roskilly A. P., Smallbone A. A combined heat and green hydrogen (CHH) generator integrated with a heat network. Energy Convers Manag 2021:246:114686. https://doi.org/10.1016/j.enconman.2021.114686
- Roest E. van der., Bol R., Fens T., Wijk A. van. Utilisation of waste heat from PEM electrolysers – Unlocking local optimisation. Int J Hydrogen Energy 2023:48(72):27872–27891. https://doi.org/10.1016/j.ijhydene.2023.03.374
- Zhang S., Zhang N. Review on integrated green hydrogen polygeneration system. Electrolysers, modelling, 4 E analysis and optimization. J Clean Prod 2023:414:137631. https://doi.org/10.1016/j.jclepro.2023.137631
- IKZ. Der ‘Stromlückenfüller’. 2017. [Online]. [Accessed: 20.02.2023]. Available: https://www.ikz.de/detail/news/detail/der-stromlueckenfueller (In German).
- Hu Q., Lin J., Zeng Q., Fu C., Li J. Optimal control of a hydrogen microgrid based on an experiment validated P2HH model. IET Renewable Power Generation 2020:14(3):364–371. https://doi.org/10.1049/iet-rpg.2019.0544
- Buttler A., Spliethoff H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review. Renewable and Sustainable Energy Reviews 2018:82(P3):2440–2454. https://doi.org/10.1016/j.rser.2017.09.003
- Al-Hamed K. H. M., Dincer I. A comparative review of potential ammonia-based carbon capture systems. Journal of Environmental Management 2021:287:112357. https://doi.org/10.1016/j.jenvman.2021.112357
- European Federation of Geologists. State of the art report. Carbon Capture & Storage. 2022. [Online]. [Accessed: 27.03.2023]. Available: https://eurogeologists.eu/wp-content/uploads/2020/10/efg_ccs_report_2020.pdf
- Yin L., Tao M. Balanced broad learning prediction model for carbon emissions of integrated energy systems considering distributed ground source heat pump heat storage systems and carbon capture & storage. Applied Energy 2023:329:120269. https://doi.org/10.1016/j.apenergy.2022.120269
- Liu Q., et al. Carbon capture and storage for long-term and safe sealing with constrained natural CO2 analogs. Renewable and Sustainable Energy Reviews 2023:171:113000. https://doi.org/10.1016/j.rser.2022.113000.
- Shah P., Wang W., Yang J. Z., Kahlor L. A., Anderson J. Framing climate change mitigation technology: The impact of risk versus benefit messaging on support for carbon capture and storage. International Journal of Greenhouse Gas Control 2022:119:103737. https://doi.org/10.1016/j.ijggc.2022.103737
- Bokka H. K., Lau H. C. Decarbonising Vietnam’s power and industry sectors by carbon capture and storage. Energy 2023:262(PA):125361. https://doi.org/10.1016/j.energy.2022.125361
- Arbad N., Watson M., Heinze L. Risk matrix for legacy wells within the Area of Review (AoR) of Carbon Capture & Storage (CCS) projects. International Journal of Greenhouse Gas Control 2022:121:103801. https://doi.org/10.1016/j.ijggc.2022.103801
- International Energy Agency. Carbon capture, utilisation and storage. [Online]. [Accessed: 27.03.2023]. Available: https://www.iea.org/fuels-and-technologies/carbon-capture-utilisation-and-storage
- Fajardy M. CO2 Capture and Utilisation. 2022. [Online]. [Accessed: 20.02.2023]. Available: https://www.iea.org/reports/co2-capture-and-utilisation
- Hong W. Y. A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future. Carbon Capture Science & Technology 2022:3:100044. https://doi.org/10.1016/j.ccst.2022.100044
- Lecomte T. Best Available Techniques (BAT) Reference Document for Large Combustion Plants. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control) 2017. [Online]. [Accessed: 27.03.2023]. Available: https://eippcb.jrc.ec.europa.eu/sites/default/files/2019-11/JRC_107769_LCPBref_2017.pdf
- Chuenphan T., Yurata T., Sema T., Chalermsinsuwan B. Techno-economic sensitivity analysis for optimization of carbon dioxide capture process by potassium carbonate solution. Energy 2022:254(PA):124290. https://doi.org/10.1016/j.energy.2022.124290
- Malekli M., Aslani A. A novel post-combustion CO2 capture design integrated with an Organic Rankine Cycle (ORC). Process Safety and Environmental Protection 2022:168:942–952. https://doi.org/10.1016/j.psep.2022.10.076
- Johnsson F., Normann F., Svensson E. Marginal Abatement Cost Curve of Industrial CO2 Capture and Storage – A Swedish Case Study. Front Energy Res 2020:8. https://doi.org/10.3389/fenrg.2020.00175
- Jiang Y., et al. Energy-effective and low-cost carbon capture from point-sources enabled by water-lean solvents. J Clean Prod 2023:388:135696. https://doi.org/10.1016/j.jclepro.2022.135696
- Eliasson Å., Fahrman E., Biermann M., Normann F., Harvey S. Efficient heat integration of industrial CO2 capture and district heating supply. International Journal of Greenhouse Gas Control 2022:118:103689. https://doi.org/10.1016/j.ijggc.2022.103689
- Beiron J., Normann F., Johnsson F. A techno-economic assessment of CO2 capture in biomass and waste-fired combined heat and power plants – A Swedish case study. International Journal of Greenhouse Gas Control 2022:118:103684. https://doi.org/10.1016/j.ijggc.2022.103684
- Jensen M. B., Ottosen L. D. M., Kofoed M. V. W. H2 gas-liquid mass transfer: A key element in biological Power-to-Gas methanation. Renewable and Sustainable Energy Reviews 2021:147:111209. https://doi.org/10.1016/j.rser.2021.111209
- Che M. Nobel Prize in chemistry 1912 to Sabatier: Organic chemistry or catalysis? Catalysis Today 2013:218–219:162–171. https://doi.org/10.1016/j.cattod.2013.07.006
- Toro C., Sciubba E. Sabatier based power-to-gas system: Heat exchange network design and thermoeconomic analysis. Applied Energy 2018:229:1181–1190. https://doi.org/10.1016/j.apenergy.2018.08.036
- Kiani A., Lejeune M., Li C., Patel J., Feron P. Liquefied synthetic methane from ambient CO2 and renewable H2 – A technoeconomic study. J Nat Gas Sci Eng 2021:94:104079. https://doi.org/10.1016/j.jngse.2021.104079
- Hervy M., et al. Power-to-gas: CO2 methanation in a catalytic fluidized bed reactor at demonstration scale, experimental results and simulation. Journal of CO2 Utilization 2021:50:101610. https://doi.org/10.1016/j.jcou.2021.101610
- Cai L., et al. Numerical simulation and multi-process coupling analysis for biomass pyrolysis fluidized bed reactor based on synergistic effects between biomass and nitrogen inlet modes. J Anal Appl Pyrolysis 2023:169:105801. https://doi.org/10.1016/j.jaap.2022.105801
- Manzoor S., Tatum J., Wani O. B., Bobicki E. R. Comminution of carbon particles in a fluidized bed reactor: A review. Minerals Engineering 2023:195:108026. https://doi.org/10.1016/j.mineng.2023.108026.
- Pandey V., Singh R., Pant K. K., Upadhyayula S. Experimental and theoretical study unveiling the role of solvents on CO activation and hydrogenation to methanol in three-phase reactor system. J Mol Struct 2023:1274:134392. https://doi.org/10.1016/j.molstruc.2022.134392
- Nahes A. L. M., Bagajewicz M. J., Costa A. L. H. A novel method for the globally optimal design of fixed bed catalytic reactors. Chem Eng Sci 2023:271:118524. https://doi.org/10.1016/j.ces.2023.118524
- Jędrzejczyk R. J., et al. Design of structured reactor for biogas exhaust abatement. Chemical Engineering Journal 2022:446:136940. https://doi.org/10.1016/j.cej.2022.136940
- Yan P., Cheng Y. Foam structured membrane reactor for distributed hydrogen production. J Memb Sci 2022:661:120927. https://doi.org/10.1016/j.memsci.2022.120927
- Champon I., Bengaouer A., Chaise A., Thomas S., Roger A.-C. Carbon dioxide methanation kinetic model on a commercial Ni/Al2O3 catalyst. Journal of CO2 Utilization 2019:34:256–265. https://doi.org/10.1016/j.jcou.2019.05.030
- Messou D., et al. Origin of the synergistic effect between TiO2 crystalline phases in the Ni/TiO2-catalyzed CO2 methanation reaction. J Catal 2021:398:14–28. https://doi.org/10.1016/j.jcat.2021.04.004
- Renda S., Ricca A., Palma V. Study of the effect of noble metal promotion in Ni-based catalyst for the Sabatier reaction. Int J Hydrogen Energy 2021:46(22):12117–12127. https://doi.org/10.1016/j.ijhydene.2020.05.093
- Engelbrecht N., Everson R. C., Bessarabov D. Thermal management and methanation performance of a microchannel-based Sabatier reactor/heat exchanger utilising renewable hydrogen. Fuel Processing Technology 2020:208:106508. https://doi.org/10.1016/j.fuproc.2020.106508
- Navajas A., Mendiara T., Gandía L. M., Abad A., García-Labiano F., de Diego L. F. Life cycle assessment of power-to-methane systems with CO2 supplied by the chemical looping combustion of biomass. Energy Convers Manag 2022:267:115866. https://doi.org/10.1016/j.enconman.2022.115866
- Reyes-Bozo L., et al. Viability analysis for use of methane obtained from green hydrogen as a reducing agent in copper smelters. Results in Engineering 2021:12:100286. https://doi.org/10.1016/j.rineng.2021.100286
- Chauvy R., Verdonck D., Dubois L., Thomas D., De Weireld G. Techno-economic feasibility and sustainability of an integrated carbon capture and conversion process to synthetic natural gas. Journal of CO2 Utilization 2021:47:101488. https://doi.org/10.1016/j.jcou.2021.101488
- De Roeck F. G., Buchmayr A., Gripekoven J., Mertens J., Dewulf J. Comparative life cycle assessment of power-to-methane pathways: Process simulation of biological and catalytic biogas methanation. J Clean Prod 2022:380(P2):135033. https://doi.org/10.1016/j.jclepro.2022.135033
- Sanad M. F., Sreenivasan S. T. Chapter 7 - Metal-organic framework in fuel cell technology: Fundamentals and application. Electrochemical Applications of Metal-Organic Frameworks: Advances and Future Potential 2022:135–189. https://doi.org/10.1016/B978-0-323-90784-2.00001-0
- Maeda A. OECD/CSTP/TIP Energy Focus Group Report Innovation in Fuel Cell Technologies in Japan: Development and Commercialization of Polymer Electrolyte Fuel Cells. 2003.
- Wang C., Liu K., Liu J. Toluene adsorption performance study of cathode air filter for high-power hydrogen fuel cell vehicles. Chemical Engineering Journal 2023:461:141782. https://doi.org/10.1016/j.cej.2023.141782
- Harichandan S., Kar S. K., Bansal R., Mishra S. K. Achieving sustainable development goals through adoption of hydrogen fuel cell vehicles in India: An empirical analysis. Int J Hydrogen Energy 2023:48(12):4845–4859. https://doi.org/10.1016/j.ijhydene.2022.11.024
- Latapí M., Davíðsdóttir B., Jóhannsdóttir L. Drivers and barriers for the large-scale adoption of hydrogen fuel cells by Nordic shipping companies. Int J Hydrogen Energy 2023:48(15):6099–6119. https://doi.org/10.1016/j.ijhydene.2022.11.108
- Biswas M., Wiberforce T. Dynamic thermal model development of direct methanol fuel cell. International Journal of Thermofluids 2023:17:100294. https://doi.org/10.1016/j.ijft.2023.100294
- Ud Din M. A., et al. Advances and challenges of methanol-tolerant oxygen reduction reaction electrocatalysts for the direct methanol fuel cell. Journal of Energy Chemistry 2023:77:499–513. https://doi.org/10.1016/j.jechem.2022.11.023
- Lo Vecchio C., Lyu X., Gatto I., Zulevi B., Serov A., Baglio V. Performance investigation of alkaline direct methanol fuel cell with commercial PGM-free cathodic materials. J Power Sources 2023:561:232732. https://doi.org/10.1016/j.jpowsour.2023.232732
- Mallick R. P. V. Energy, exergy, economic and environmental (4-E) analyses of plasma gasification steam cycle integrated molten carbonate fuel cell for hydrogen and power co-generation based on residual waste feedstocks. Int J Hydrogen Energy 2023:48(45):16971–16986. https://doi.org/10.1016/j.ijhydene.2023.01.231
- Divan A., Zahedi A., Mousavi S. S. Conceptual design and technical analysis of a hybrid natural gas/molten carbonate fuel cell system for combined cooling, heating, and power applications. Energy Build 2022:273:112402. https://doi.org/10.1016/j.enbuild.2022.112402.
- Samanta S., Roy D. Molten carbonate fuel cell integrated hybrid system for clean and efficient power generation. Appl Therm Eng 2023:226:120294. https://doi.org/10.1016/j.applthermaleng.2023.120294
- Smart ways for in-situ totally integrated and continuous multisource generation of hydrogen. [Online]. [Accessed: 27.02.2023]. Available: https://switch-fch.eu/about
- Solid oxide fuel cell combined heat and power: Future-ready Energy. [Online]. [Accessed: 27.02.2023]. Available: https://www.clean-hydrogen.europa.eu/projects-repository/so-free_en
- Coulibaly S., Tang Y., Camara S., Zhao J., Li W. A theoretical study of molten carbonate fuel cell combined with a solar power plant and Cu–Cl thermochemical cycle based on techno-economic analysis. Int J Hydrogen Energy 2022:47(54):22680–22690. https://doi.org/10.1016/j.ijhydene.2022.05.030
- Hadelu L. M., Noorpoor A., Boyaghchi F. A., Mirjalili S. A new molten carbonate fuel cell hybrid power generation system using two-stage sodium thermo-electrochemical converter/two-stage thermoelectric generator: Performance analysis and multi-objective grasshopper optimization. J Power Sources 2022:547:232006. https://doi.org/10.1016/j.jpowsour.2022.232006
- Barckholtz T. A., Taylor K. M., Narayanan S., Jolly S., Ghezel-Ayagh H. Molten carbonate fuel cells for simultaneous CO2 capture, power generation, and H2 generation. Appl Energy 2022:313:118553. https://doi.org/10.1016/j.apenergy.2022.118553
- Chen S., Zhou N., Wu M., Chen S., Xiang W. Integration of molten carbonate fuel cell and chemical looping air separation for high-efficient power generation and CO2 capture. Energy 2022:254(PA):124184. https://doi.org/10.1016/j.energy.2022.124184
- Chahartaghi M., Einanlou M., Hashemian S. M. Energy and exergy analyses of a combined cooling, heating and power system with prime mover of phosphoric acid fuel cell with organic Rankine cycle. Appl Therm Eng 2021:193:116989. https://doi.org/10.1016/j.applthermaleng.2021.116989
- Guo X., Zhang H., Hu Z., Hou S., Ni M., Liao T. Energetic, exergetic and ecological evaluations of a hybrid system based on a phosphoric acid fuel cell and an organic Rankine cycle. Energy 2021:217:119365. https://doi.org/10.1016/j.energy.2020.119365
- Cheng S., Zhao G., Gao M., Shi Y., Huang M., Marefati M. A new hybrid solar photovoltaic/phosphoric acid fuel cell and energy storage system; Energy and Exergy performance. Int J Hydrogen Energy 2021:46(11):8048–8066. https://doi.org/10.1016/j.ijhydene.2020.11.282
- Sun Q., Lin D., Khayatnezhad M., Taghavi M. Investigation of phosphoric acid fuel cell, linear Fresnel solar reflector and Organic Rankine Cycle polygeneration energy system in different climatic conditions. Process Safety and Environmental Protection 2021:147:993–1008. https://doi.org/10.1016/j.psep.2021.01.035
- Park C., Jung Y., Lim K., Kim B., Kang Y., Ju H. Analysis of a phosphoric acid fuel cell-based multi-energy hub system for heat, power, and hydrogen generation. Appl Therm Eng 2021:189:116715. https://doi.org/10.1016/j.applthermaleng.2021.116715
- Wilailak S., et al. Thermo-economic analysis of Phosphoric Acid Fuel-Cell (PAFC) integrated with Organic Ranking Cycle (ORC). Energy 2021:220:119744. https://doi.org/10.1016/j.energy.2020.119744
- Oh J., Jung Y., Kim H., Lee H. Cascade utilization of organic Rankine cycle and absorption chiller assisted phosphoric acid fuel cell waste heat for dynamic building demands. Energy Convers Manag 2022:263:115699. https://doi.org/10.1016/j.enconman.2022.115699
- Tomas M., Novotny P., Gholami F., Tucek O., Marsik F. A Comparative Study of Dynamic Load Response of High Temperature PEM Fuel Cells. Environmental and Climate Technologies 2020:24(1):529–544. https://doi.org/10.2478/rtuect-2020-0033
- Giffin J., Conti F., Korte C. Electrical Conductivity and Water Effects in Phosphoric Acid Solutions for Doping of Membranes in Polymer Electrolyte Fuel Cells. Environmental and Climate Technologies 2021:25(1):467–478. https://doi.org/10.2478/rtuect-2021-0034
- Auñón-Hidalgo J. A., Sidrach-de-Cardona M., Auñón-Rodríguez F. Performance and CO2 emissions assessment of a novel combined solar photovoltaic and thermal, with a Stirling engine micro-CHP system for domestic environments. Energy Convers Manag 2021:230:113793. https://doi.org/10.1016/j.enconman.2020.113793
- Bozorgmehri S., Heidary H., Salimi M. Market diffusion strategies for the PEM fuel cell-based micro-CHP systems in the residential sector: scenario analysis. Int J Hydrogen Energy 2023:48(9):3287–3298. https://doi.org/10.1016/j.ijhydene.2022.10.159
- Darzi M., Zamani Meymian N., Johnson D. Energy optimization of a micro-CHP engine using 1-D and 3-D modelling. Appl Therm Eng 2021:191:116904. https://doi.org/10.1016/j.applthermaleng.2021.116904
- Mishra V., Trimbake S. 4 E analysis of DG set based micro combined heat and power (CHP) system and its employment for shelter heating in high altitude areas. Mater Today Proc 2023:72:1803–1810. https://doi.org/10.1016/j.matpr.2022.09.575
- Hamzehkolaei F. T., Amjady N., Ghamsari-Yazdel M., Jazaeri M. A new multi-objective profit-driven micro-CHP planning model under participation in thermal and electrical markets. Appl Therm Eng 2023:218:119237. https://doi.org/10.1016/j.applthermaleng.2022.119237
- de Oliveira Gabriel R., de Souza Laya Junior E., Leal Braga S., Pradelle F., Torres Serra E., Coutinho Sobral Vieira C. L. Technical, economic and environmental analysis of a hybrid CHP system with a 5 kW PEMFC, photovoltaic panels and batteries in the Brazilian scenario. Energy Convers Manag 2022:269:116042. https://doi.org/10.1016/j.enconman.2022.116042
- Hashemi A., Derakhshan G., Alizadeh Pahlavani M. R., Abdi B. Techno-Economic Analysis of a Stand-Alone Hybrid Wind-Power Fuel-Cell Grid System: A Case Study in Shahryar Region of Tehran. Environmental and Climate Technologies 2020:24(1):691–705. https://doi.org/10.2478/rtuect-2020-0043
- Yuan-Hu L., Kim J., Lee S., Kim G., Han H. Efficiency improvement of a fuel cell cogeneration plant linked with district heating: Construction of a water condensation latent heat recovery system and analysis of real operational data. Appl Therm Eng 2022:201:117754. https://doi.org/10.1016/j.applthermaleng.2021.117754
- Boulmrharj S., Khaidar M., Bakhouya M., Ouladsine R., Siniti M., Zine-dine K. Performance assessment of a hybrid system with hydrogen storage and fuel cell for cogeneration in buildings. Sustainability (Switzerland) 2020:12. https://doi.org/10.3390/su12124832