Have a personal or library account? Click to login

Economic Analysis of Mobile Thermal Energy Storages as Complement to District Heating

By:
Open Access
|Oct 2023

References

  1. Euroheat&Power. DHC Market Outlook. 2023.
  2. Rušeljuk P., Volkova A., Lukić N., Lepiksaar K., Nikolić N., Nešović A., Siirde A. Factors Affecting the Improvement of District Heating. Case Studies of Estonia and Serbia. Environmental and Climate Technologies 2021:24(3):521–533. https://doi.org/10.2478/rtuect-2020-0121
  3. Postnikov I. Application of the Methods for Comprehensive Reliability Analysis of District Heating Systems. Environmental and Climate Technologies 2021:24(3):145–162. https://doi.org/10.2478/rtuect-2020-0093
  4. Pakere I., Lauka D., Dolge K., Vitolins V., Polikarpova I., Holler S., Blumberga D. Climate Index for District Heating System. Environmental and Climate Technologies 2020:24(1):406–418. https://doi.org/10.2478/rtuect-2020-0024
  5. Nussbaumer T., Thalmann S. Influence of system design on heat distribution costs in district heating. Energy 2016:101:496–505. https://doi.org/10.1016/j.energy.2016.02.062
  6. Masatin V., Latõšev E., Volkova A. Evaluation Factor for District Heating Network Heat Loss with Respect to Network Geometry. Energy Procedia 2016:95:279–285. https://doi.org/10.1016/j.egypro.2016.09.069
  7. Andersen M., Bales C., Dalenbäck J. O. Heat distribution concepts for small solar district heating systems – Techno-economic study for low line heat densities. Energy Conversion and Management: X 2022:15:100243. https://doi.org/10.1016/j.ecmx.2022.100243
  8. Kumar L., Ahmed J., El Haj Assad M., Hasanuzzaman M. Prospects and Challenges of Solar Thermal for Process Heating: A Comprehensive Review. Energies 2022:15(22):8501. https://doi.org/10.3390/en15228501
  9. HeatRoadmapEurope. Heating and Cooling – facts and figures. Heat Roadmap Europe, 2017.
  10. Miró L., Gasia J., Cabeza L. F. Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review. Applied Energy 2016:179:284–301. https://doi.org/10.1016/j.apenergy.2016.06.147
  11. Shehadeh M., Kwok E., Owen J., Bahrami M. Integrating mobile thermal energy storage (M-tes) in the city of surrey’s district energy network: A techno-economic analysis. Applied Sciences (Switzerland) 2021:11(3):1–12. https://doi.org/10.3390/app11031279
  12. Du K., Calautit J., Eames P., Wu Y. A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat supply. Renewable Energy 2021:168:1040–1057. https://doi.org/10.1016/j.renene.2020.12.057
  13. Li H., Wang W., Yan J., Dahlquist E. Economic assessment of the mobilized thermal energy storage (M-TES) system for distributed heat supply. Applied Energy 2013:104:178–186. https://doi.org/10.1016/j.apenergy.2012.11.010
  14. Deckert M., Scholz R., Binder S., Hornung A. Economic efficiency of mobile latent heat storages. Energy Procedia 2014:46:171–177. https://doi.org/10.1016/j.egypro.2014.01.170
  15. Guo S., Liu Q., Zhao J., Jin G., Wu W., Yan J., Li H., Jin H. Mobilized thermal energy storage: Materials, containers and economic evaluation. Energy Conversion and Management 2018:177:315–329. https://doi.org/10.1016/j.enconman.2018.09.070
  16. Yang J., Zhang Z., Chen J., Hong M., Li H., Li Y., Yang M. Investigating the economic returns of mobile heat storage devices in the multi-stage closed-loop supply chain. Energy Reports 2020:6:181–189. https://doi.org/10.1016/j.egyr.2020.06.023
  17. Fritz M., Plötz P., Schebek L. A technical and economical comparison of excess heat transport technologies. Renewable and Sustainable Energy Reviews 2022:168:112889. https://doi.org/10.1016/j.rser.2022.112899
  18. Guo S., Zhao J., Bertrand A., Yan J. Mobilized thermal energy storage for clean heating in carbon neutrality era: A perspective on policies in China. Energy and Buildings 2022:277:112537. https://doi.org/10.1016/j.enbuild.2022.112537
  19. Fujii S., Nakagaki T., Kanematsu Y., Kikuchi Y. Prospective life cycle assessment for designing mobile thermal energy storage system utilizing zeolite. Journal of Cleaner Production 2022:365:132592. https://doi.org/10.1016/j.jclepro.2022.132592
  20. Krönauer A., Lävemann E., Brückner S., Hauer A. Mobile sorption heat storage in industrial waste heat recovery. Energy Procedia 2015:73:272–280. https://doi.org/10.1016/j.egypro.2015.07.688
  21. Hauer A., Krönauer A., Lävemann E. Wärmetransport mit Lastkraftwagen. (Heat transport by truck). 2019:1–21. [Online]. [Accessed: 12.03.2023]. Available: https://docplayer.org/126531665-Waermetransport-mitlastkraftwagen.html (In German).
  22. Verein Deutscher Ingenieure. VDI 2067 – Economic efficiency of building installations 2012:44.
  23. Statistics_Austria. Customer Price Indices 1990 - 2022 in Austria 2023. [Online]. [Accessed: 20.03.2023]. Available: https://www.statistik.at/fileadmin/pages/214/CPI.pdf
  24. Zettl B., Englmair G., Steinmaurer G. Development of a revolving drum reactor for open-sorption heat storage processes. Applied Thermal Engineering 2014:70:42–49. https://doi.org/10.1016/j.applthermaleng.2014.04.069
  25. Lizana J, Chacartegui R, Barrios-Padura A, Valverde JM. Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review. Applied Energy 2017:203:219–239. https://doi.org/10.1016/j.apenergy.2017.06.008
  26. Martin H, editor. VDI-Wärmeatlas. 10th ed. Berlin: Springer-Verlag, 2005.
  27. NILS. Technical datasheet Calor 32 - Spezialöl für Wärmeübertragungsanlagen. 2015. [Online]. [Accessed: 21.01.2015]. https://www.nils.eu/de/prodotti/calor/
  28. Baehr H. D., Stephan K. Wärme- und Stoffübertragung. 5th ed. Berlin: Springer-Verlag, 2006.
  29. Link S., Plötz P., Griener J., Moll C. Lieferverkehr mit Batterie-Lkw: Machbarkeit 2021 Fallbeispiel REWE Group– Region Nordost. Karlsruhe: 2021. (Delivery traffic with battery trucks: Feasibility 2021 case study REWE Group – Northeast region. Karlsruhe: 2021). (In German).
  30. Schwendinger M. Durch emissionsfreie Lkw Klimabilanz verbessern. (Improve the climate balance through emission-free trucks). Fact Sheet 2021:04:8. (In German). [Online]. [Accessed: 25.11.2022]. https://vcoe.at/files/vcoe/uploads/News/VCOe-Factsheets/2021/2021-03%20Emissionsfreie%20Lkw/VC%C3%96-Factsheet%202021-03%20Durch%20emissionsfreie%20Lkw%20Klimabilanz%20verbessern.pdf
DOI: https://doi.org/10.2478/rtuect-2023-0038 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 516 - 531
Submitted on: Mar 29, 2023
Accepted on: Jun 30, 2023
Published on: Oct 4, 2023
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2023 Alois Resch, Harald Dehner, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.