Rušeljuk P., Volkova A., Lukić N., Lepiksaar K., Nikolić N., Nešović A., Siirde A. Factors Affecting the Improvement of District Heating. Case Studies of Estonia and Serbia. Environmental and Climate Technologies 2021:24(3):521–533. https://doi.org/10.2478/rtuect-2020-0121
Postnikov I. Application of the Methods for Comprehensive Reliability Analysis of District Heating Systems. Environmental and Climate Technologies 2021:24(3):145–162. https://doi.org/10.2478/rtuect-2020-0093
Pakere I., Lauka D., Dolge K., Vitolins V., Polikarpova I., Holler S., Blumberga D. Climate Index for District Heating System. Environmental and Climate Technologies 2020:24(1):406–418. https://doi.org/10.2478/rtuect-2020-0024
Masatin V., Latõšev E., Volkova A. Evaluation Factor for District Heating Network Heat Loss with Respect to Network Geometry. Energy Procedia 2016:95:279–285. https://doi.org/10.1016/j.egypro.2016.09.069
Andersen M., Bales C., Dalenbäck J. O. Heat distribution concepts for small solar district heating systems – Techno-economic study for low line heat densities. Energy Conversion and Management: X 2022:15:100243. https://doi.org/10.1016/j.ecmx.2022.100243
Kumar L., Ahmed J., El Haj Assad M., Hasanuzzaman M. Prospects and Challenges of Solar Thermal for Process Heating: A Comprehensive Review. Energies 2022:15(22):8501. https://doi.org/10.3390/en15228501
Miró L., Gasia J., Cabeza L. F. Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review. Applied Energy 2016:179:284–301. https://doi.org/10.1016/j.apenergy.2016.06.147
Shehadeh M., Kwok E., Owen J., Bahrami M. Integrating mobile thermal energy storage (M-tes) in the city of surrey’s district energy network: A techno-economic analysis. Applied Sciences (Switzerland) 2021:11(3):1–12. https://doi.org/10.3390/app11031279
Du K., Calautit J., Eames P., Wu Y. A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat supply. Renewable Energy 2021:168:1040–1057. https://doi.org/10.1016/j.renene.2020.12.057
Li H., Wang W., Yan J., Dahlquist E. Economic assessment of the mobilized thermal energy storage (M-TES) system for distributed heat supply. Applied Energy 2013:104:178–186. https://doi.org/10.1016/j.apenergy.2012.11.010
Guo S., Liu Q., Zhao J., Jin G., Wu W., Yan J., Li H., Jin H. Mobilized thermal energy storage: Materials, containers and economic evaluation. Energy Conversion and Management 2018:177:315–329. https://doi.org/10.1016/j.enconman.2018.09.070
Yang J., Zhang Z., Chen J., Hong M., Li H., Li Y., Yang M. Investigating the economic returns of mobile heat storage devices in the multi-stage closed-loop supply chain. Energy Reports 2020:6:181–189. https://doi.org/10.1016/j.egyr.2020.06.023
Fritz M., Plötz P., Schebek L. A technical and economical comparison of excess heat transport technologies. Renewable and Sustainable Energy Reviews 2022:168:112889. https://doi.org/10.1016/j.rser.2022.112899
Guo S., Zhao J., Bertrand A., Yan J. Mobilized thermal energy storage for clean heating in carbon neutrality era: A perspective on policies in China. Energy and Buildings 2022:277:112537. https://doi.org/10.1016/j.enbuild.2022.112537
Fujii S., Nakagaki T., Kanematsu Y., Kikuchi Y. Prospective life cycle assessment for designing mobile thermal energy storage system utilizing zeolite. Journal of Cleaner Production 2022:365:132592. https://doi.org/10.1016/j.jclepro.2022.132592
Krönauer A., Lävemann E., Brückner S., Hauer A. Mobile sorption heat storage in industrial waste heat recovery. Energy Procedia 2015:73:272–280. https://doi.org/10.1016/j.egypro.2015.07.688
Hauer A., Krönauer A., Lävemann E. Wärmetransport mit Lastkraftwagen. (Heat transport by truck). 2019:1–21. [Online]. [Accessed: 12.03.2023]. Available: https://docplayer.org/126531665-Waermetransport-mitlastkraftwagen.html (In German).
Statistics_Austria. Customer Price Indices 1990 - 2022 in Austria 2023. [Online]. [Accessed: 20.03.2023]. Available: https://www.statistik.at/fileadmin/pages/214/CPI.pdf
Zettl B., Englmair G., Steinmaurer G. Development of a revolving drum reactor for open-sorption heat storage processes. Applied Thermal Engineering 2014:70:42–49. https://doi.org/10.1016/j.applthermaleng.2014.04.069
Lizana J, Chacartegui R, Barrios-Padura A, Valverde JM. Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review. Applied Energy 2017:203:219–239. https://doi.org/10.1016/j.apenergy.2017.06.008
Link S., Plötz P., Griener J., Moll C. Lieferverkehr mit Batterie-Lkw: Machbarkeit 2021 Fallbeispiel REWE Group– Region Nordost. Karlsruhe: 2021. (Delivery traffic with battery trucks: Feasibility 2021 case study REWE Group – Northeast region. Karlsruhe: 2021). (In German).
Schwendinger M. Durch emissionsfreie Lkw Klimabilanz verbessern. (Improve the climate balance through emission-free trucks). Fact Sheet 2021:04:8. (In German). [Online]. [Accessed: 25.11.2022]. https://vcoe.at/files/vcoe/uploads/News/VCOe-Factsheets/2021/2021-03%20Emissionsfreie%20Lkw/VC%C3%96-Factsheet%202021-03%20Durch%20emissionsfreie%20Lkw%20Klimabilanz%20verbessern.pdf