References
- Pakere I., Prodanuks T., Kamenders A., Veidenbergs I., Holler S., Villere A., Blumberga D. Ranking EU climate and energy policies. Environmental and Climate Technologies 2021:25:1:367–381. https://doi.org/10.2478/rtuect-2021-0027
- Londoño-Pineda A. A., Cano J. A. Assessments under the United Nations Sustainable Development Goals: A bibliometric analysis. Environmental and Climate Technologies 2022:26:1:166–181. https://doi.org/10.2478/rtuect-2022-0014
- Directive 2018/2001/EC of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (Renewable Energy Directive II). Official Journal of European Union 2018:L 328/82–209.
- IEA International Energy Agency. Outlook for biogas and biomethane. Prospects for organic growth [Online]. [Accessed: 21.03.2023]. Available: https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane
- Vilardi G., Bassano C., Deiana P., Verdone N. Exergy and energy analysis of three upgrading processes. Energy Conversion and Management 2020:224:113323. https://doi.org/10.1016/j.enconman.2020.113323
- Chen X. Y., Vinh-Thang H., Ramirez A. A., Rodrigue D., Kaliaguine S. Membrane gas separation technologies for biogas upgrading. RSC Advances 2015:5:24399. https://doi.org/10.1039/C5RA00666J
- Hosseinipour S. A., Mehrpooya M. Comparison of the biogas upgrading methods as a transportation fuel. Renewable Energy 2019:130:641–655. https://doi.org/10.1016/j.renene.2018.06.089
- Pavičić J., Novak Mavar K., Brkić V., Simon K. Biogas and biomethane production and usage: Technology development, advantages and challenges in Europe. Energies 2022:15(8):2940. https://doi.org/10.3390/en15082940
- Bauer F., Hulteberg C., Persson T., Tamm D. Biogas upgrading: Review of commercial technologies. Svenskt Gastekniskt CenterAB. SGC Rapport, 2013.
- Biogas to biomethane technology review. In: Promotion of bio-methane and its market development through local and regional partnership. Task 3.1.1. TU Wien (Technische Universität Wien). Intelligent Energy European programme project, 2012.
- Vo T. T. Q., Wall D. M., Ring D., Rajendran K., Murphy J. D. Techno-economic analysis of biogas upgrading via amine scrubber, carbon capture and ex-situ methanation. Applied Energy 2018:212:1191–1202. https://doi.org/10.1016/j.apenergy.2017.12.099
- Valdmanis G., Bazbauers G., Bataitis M., Bohvalovs G., Lilo J., Blumberga A., Blumberga D. CO2-to-fuel: Business and institutional aspects of implementation dynamics. Environmental and Climate Technologies 2022:26:1:1182–1195. https://doi.org/10.2478/rtuect-2022-0089
- Alvarez-Huamani M., Paredes-Zavala J., Davila-del-Carpio G. Sustainability-based life cycle analysis of biomethane as a transportation fuel compared to Diesel and natural gas in Arequipa. Preprints 2021:2021110001. https://doi.org/10.20944/preprints202111.0001.v1
- Ishizaka A., Nemery P. Multi-Criteria Decision Analysis. Methods and Software. West Sussex (United Kingdom): Wiley, 2013.
- Paturska A., Repele M., Bazbauers G. Economic assessment of biomethane supply system based on natural gas infrastructure. Energy Procedia 2015: 72:71-78. doi: 10.1016/j.egypro.2015.06.011
- Verbeeck K., Buelens L. C., Galvita V. V., Marin G. B., Van Geem K. M., Rabaey K. Upgrading the value of anaerobic digestion via chemical production from grid injected biomethane. Energy and Environmental Science 2018:11:1788–1802. https://doi.org/10.1039/C8EE01059E
- Niesner J., Jecha D., Stehlik P. Biogas upgrading techniques: State of art review in European region. Chemical Engineering Transactions 2013:35:517–522. https://doi.org/10.3303/CET1335086
- Dzene I., Romagnoli F., Seile G., Blumberga D. Comparison of different biogas use pathways for Latvia: Biogas use in CHP vs. biogas upgrading. 9th International Conference Environmental Engineering, Vilnius, 2014. https://doi.org/10.3846/enviro.2014.017
- Slišāne D., Gaumigs G., Lauka D., Blumberga D. Assessment of energy sustainability in statistical regions of Latvia using Energy Sustainability Index. Environmental and Climate Technologies 2020:24:2:160–169. https://doi.org/10.2478/rtuect-2020-0069
- Cinelli M., Coles S. R., Kirwan K. Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecological Indicators 2014:46:138–148. https://doi.org/10.1016/j.ecolind.2014.06.011
- Vo T. T. Q., Xia A., Rogan F., Wall D. M., Murphy J. D. Sustainability assessment of large-scale storage technologies for surplus electricity using group multi-criteria decision analysis. Clean Technology Environmental Policy 2017: 19:689–703. https://doi.org/10.1007/s10098-016-1250-8
- Myllyviita T., Holma A., Antikainen R., Lähtinen K., Leskinen P. Assessing environmental impacts of biomass production chains: Application of life cycle assessment (LCA) and multi-criteria decision analysis (MCDA). Journal of Cleaner Production 2012:29–30:238–245. https://doi.org/10.1016/j.jclepro.2012.01.019
- Martín-Gamboa M., Dias L. C., Quinteiro P., Freire F., Arroja L., Dias A. C. Multi-criteria and life cycle assessment of wood-based bioenergy alternatives for residential heating: A sustainability analysis. Energies 2019:12(22):4391. https://doi.org/10.3390/en12224391
- Kheybari S., Rezaie F. M. Selection of biogas, solar, and wind power plants’ locations: An MCDA approach. Journal of Supply Chain Management Science 2020:1:1–2. http://dx.doi.org/10.18757/jscms.2020.4805
- Taraszkiewicz N. Agricultural biogas plant location selection using MCDA methods. Proceedings 2019:16:7. https://doi.org/10.3390/proceedings2019016007
- Bhowmik C., Kaviani M. A., Ray A., Ocampo L. An integrated entropy: TOPSIS methodology for evaluating green energy sources. In: Research anthology on clean energy management and solutions. Hershey (PA): IGI Global, 2021. https://doi.org/10.4018/978-1-7998-9152-9.ch010
- Şengül Ü., Eren M., Shiraz S. E., Gezder V., Şengül A. B. Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey. Renewable Energy 2015:75:617–625. https://doi.org/10.1016/j.renene.2014.10.045
- Hajduk S., Jelonek D. A decision-making approach based on TOPSIS method for ranking smart cities in the context of urban energy. Energies 2021:14(9):2691. https://doi.org/10.3390/en14092691
- Irfan M., Elavarasan R. M., Ahmad M., Mohsin M., Dagar V., Hao Y. Prioritizing and overcoming biomass energy barriers: Application of AHP and G-TOPSIS approaches. Technological Forecasting & Social Change 2022:177:121524. https://doi.org/10.1016/j.techfore.2022.121524
- Chakraborty S. TOPSIS and Modified TOPSIS: A comparative analysis. Decision Analytics Journal 2022:2:100021. https://doi.org/10.1016/j.dajour.2021.100021
- Karklina K., Slisane D., Romagnoli F., Blumberga D. Social life cycle assessment of biomethane production and distribution in Latvia. Environmental Technology Proceedings of the International Scientific and Practical Conference, 2015. https://doi.org/10.17770/etr2015vol2.628
- Kuleli Pak B., Albayrak Y. E., Erensal Y. C. Renewable energy perspective for Turkey using sustainability indicators. International Journal of Computational Intelligence Systems 2015:8:1:187–197. https://doi.org/10.2991/ijcis.2015.8.1.15
- GSE. Atlaimpianti, 2023 [Online]. [Accessed 27.03.2023]. Available: https://www.gse.it/dati-e-scenari/atlaimpianti
- Ammenberg J., Gustafsson, M., O’Shea R., Gray, N., Lyng K-A., Eklund M., Murphy J. D. Perspectives on biomethane as a transport fuel within a circular economy, energy, and environmental system. Ammenberg, J; Murphy, J.D. (Ed.) IEA Bioenergy Task 37 2021:12.
- Balcioglu G., Jeswani H.K., Azapagic A. Evaluating the environmental and economic sustainability of energy from anaerobic digestion of different feedstocks in Turkey. Sustainable Production and Consumption 2022:32:924–941. https://doi.org/10.1016/j.spc.2022.06.011
- Bellini R., Bassani I., Vizzarro A., Azim A. A., Vasile N. S., Pirri C. F., Verga F., Menin B. Biological aspects, advancaments and techno-economical evaluation of biological methanation for the recycling and valorization of CO2. Energies 2022:15(11):4064. https://doi.org/10.3390/en15114064
- Goulding D., Power N. Which is the preferable biogas utilisation technology for anaerobic digestion of agricultural crops in Ireland: Biogas to CHP or biomethane as a transport fuel? Renewable Energy 2013:53:121–131. https://doi.org/10.1016/j.renene.2012.11.001
- Lawson N., Alvarado-Morales M. Tsapekos P., Angelidaki I. Techno-Economic Assessment of Biological Biogas Upgrading Based on Danish Biogas Plants. Energies 2021:14(24):8252. https://doi.org/10.3390/en14248252
- Murphy J. D., McKeogh E., Kiely G. Technical/economic/environmental analysis of biogas utilization. Applied Energy 2004:77(4):407–427. https://doi.org/10.1016/j.apenergy.2003.07.005
- Rotunno P., Lanzini A., Leone P. Energy and economic analysis of a water scrubbing based biogas upgrading process for biomethane injection into the gas grid or use as transportation fuel. Renewable Energy 2017:102(PB):417–432. https://doi.org/10.1016/j.renene.2016.10.062
- Bienert K., Schumacher B., Rojas Arboleda M., Billig E., Shakya S., Rogstrand G., Zieliński M., Dębowski M. Multi-Indicator assessment of innovative small-scale biomethane technologies in Europe. Energies 2019:12(7):1321. https://doi.org/10.3390/en12071321
- Miltner M., Makaruk A., Harasek M. Review on available biogas upgrading technologies and innovations towards advanced solutions. Journal of Cleaner Production 2017:161:1329–1337. https://doi.org/10.1016/j.jclepro.2017.06.045
- Johansson N. Production of liquid biogas, LBG, with cryogenic and conventional upgrading technology: Description of systems and evaluations of energy balances. Master Thesis, 2008, Lunds Universitet.
- Tauber J., Parravicini V., Svardal K., Krampe J. Quantifying methane emissions from anaerobic digesters. Water Science & Technology 2019:80(9):1654–1661. https://doi.org/10.2166/wst.2019.415
- Capra F., Magli F., Gatti M. Biomethane liquefaction: A systematic comparative analysis of refrigeration technologies. Applied Thermal Engineering 2019:158:113815. https://doi.org/10.1016/j.applthermaleng.2019.113815
- Gantenbein A., Kröcher O., Biollaz S. M. A., Schildhauer T. J. Techno-economic evaluation of biological and fluidised-bed based methanation process chains for grid-ready biomethane production. Frontiers in Energy Research 2022:9:775259. https://doi.org/10.3389/fenrg.2021.775259
- Dupnock T. L., Deshusses M. A. Biological co-treatment of H2S and reduction of CO2 to methane in an anoxic biological trickling filter upgrading biogas. Chemosphere 2020:256:127078. https://doi.org/10.1016/j.chemosphere.2020.127078
- Kougias P. G., Treu L., Peñailillo Benavente D., Boe K., Campanaro S., Angelidaki I. Ex-situ biogas upgrading and enhancement in different reactor systems. Bioresource Technology 2017:225:429–437. https://doi.org/10.1016/j.biortech.2016.11.124
- Ma Y., Guo H., Selyanchyn R., Wang B., Deng L., Dai Z., Jiang X. Hydrogen sulfide removal from natural gas using membrane technology: A review. Journal of Material Chemistry A 2021:9:20211–20240. https://doi.org/10.1039/D1TA04693D
- Rusmanis D., O’Shea R., Wall D. M., Murphy J. D. Biological hydrogen methanation systems: An overview of design and efficiency. Bioengineered 2019:10(1):604–634. https://doi.org/10.1080/21655979.2019.1684607
- Voelklein M. A., Rusmanis D., Murphy J. D. Biological methanation: Strategies for in-situ and ex-situ upgrading in anaerobic digestion. Applied Energy 2019:235:1061–1071. https://doi.org/10.1016/j.apenergy.2018.11.006
- Antukh T., Lee I., Joo S. and Kim H. Hydrogenotrophs-based biological biogas upgrading technologies. Frontiers in Bioengineering and Biotechnology 2022:10:833482. https://doi.org/10.3389/fbioe.2022.833482
- CIB Consorzio Italiano Biogas. Biogas 2020. Position paper [Online]. [Accessed 16.02.2023]. Available: https://www.consorziobiogas.it/pubblicazioni-2/
- Cucchiella F., D’Adamo I., Gastaldi M., Miliacca M. A profitability analysis of small-scale plants for biomethane injection into the gas grid. Journal of Cleaner Production 2018:184:179–187. https://doi.org/10.1016/j.jclepro.2018.02.243
- Moschini M. Upgrading to biomethane and power production in SOFC-based cogeneration system: An exergo-economic comparison of biogas conversion alternatives. Tesi di Laurea Magistrale in Ingegneria Energetica e Nucleare, Politecnico di Torino, 2017.
- Valli C., Cavaliere A., Ferravante L., Scagliotti M. Un approfondimento sulla metanazione biologica per l’upgrading del biogas a biometano: Fattibilità tecnico-economica e possibile ruolo nella gestione delle rinnovabili non programmabili. (An insight into biological methanation for the upgrading of biogas to biomethane: Technical-economic feasibility and possible role in the management of non-programmable renewables). Ricerca sul Sistema Energetico RSE S.p.A. [Online]. [Accessed: 15.04.2023]. Available: https://www.rse-web.it/rapporti/18007798/ (In Italian).
- Ardolino F., Cardamone G. F., Parillo F., Arena U. Biogas-to-biomethane upgrading: A comparative review and assessment in a life cycle perspective. Renewable and Sustainable Energy Reviews 2021:139:110588. https://doi.org/10.1016/j.rser.2020.110588
- Badr S., Frutiger J., Hungerbuehler K., Papadokonstantakis S. A framework for the environmental, health and safety hazard assessment for amine-based post combustion CO2 capture. International Journal of Greenhouse Gas Control 2017:56:202–220. https://doi.org/10.1016/j.ijggc.2016.11.013
- Jia J., Chen Y., Che G., Zhu J., Wang F., Jia P. Experimental study on the explosion characteristics of hydrogen-methane premixed gas in complex pipe networks. Scientific Reports 2021:11:21204. https://doi.org/10.1038/s41598-021-00722-8
- Kotek L., Trávníček P., Blecha P. Accident analysis of European biogas stations. Chemical Engineering Transactions 2015:43:1933-1938. https://doi.org/10.3303/CET1543323
- Scarponi G. E., Guglielmi D., Casson Moreno V., Cozzani V. Risk assessment of a biogas production and upgrading plant. Chemical Engineering Transactions 2015:43:1921–1926. https://doi.org/10.3303/CET1543321
- Seay J., Lunghi E., Rehman A., Fabiano B. Analysis of accident data for the bioenergy sector based on second generation feedstock. Chemical Engineering Transaction 2017:57:871–876. https://doi.org/10.3303/CET1757131
- EBA European Biogas Association. Companies Catalogue: Members of the European Biogas association [Online]. [Accessed 16.02.2023]. Available: https://www.europeanbiogas.eu/wp-content/uploads/2019/05/Companies-Catalogue-EBA-2018.pdf
- Electrochaea GmbH. Electroarchaea Fact Sheet 2019:10 [Online]. [Accessed 16.02.2023]. Available: http://www.electrochaea.com/wp-content/uploads/2019/10/20191030_Press-Kit_Electrochaea.pdf
- Hashemi S. E., Kim D., Austbø B. Objective function evaluation for optimization of an amine-based biogas upgrading and liquefaction process. Industrial and Engineering Chemical Research 2022:61(19):6562–6574. https://doi.org/10.1021/acs.iecr.1c04378
- Kulla M., Novotný L., Pregi L. The role and perception of biogas in the energy transformation in Slovakia. Geographia Cassoviensis 2022:16(1). https://doi.org/10.33542/GC2022-1-04
- Navigant Netherlands B. V. Gas for climate: Job creation by scaling up renewable gas in Europe. Prepared for: Gas for climate: A path to 2050. Reference No. 203997 [Online]. [Accessed 15th April 2023]. Available: https://gasforclimate2050.eu/wp-content/uploads/2020/03/Navigant-Gas-for-Climate-Job-creation-by-scaling-up-renewable-gas-in-Europe.pdf
- Sala S. Triple bottom line, sustainability and sustainability assessment, an overview. In: Biofuels for a more sustainable future. Life Cycle Assessment and Multi-Criteria Decision Making. Amsterdam (The Netherlands): Elsevier Inc., 2020. https://doi.org/10.1016/B978-0-12-815581-3.00003-8
- Cucchiella F., D’Adamo I., Gastaldi M. Biomethane: A renewable resource as vehicle fuel. Resources 2017:6(4):58. https://doi.org/10.3390/resources6040058
- Herbes C., Chouvellon S., Lacombe J. Towards marketing biomethane in France: French consumers’ perception of biomethane. Energy, Sustainability and Society 2018:8:37. https://doi.org/10.1186/s13705-018-0179-7
- Soltanzadeh A., Mahdinia M., Golmohammadpour H., Pourbabaki R., Mohammad-Ghasemi M., Sadeghi-Yarandi M. Evaluating the potential severity of biogas toxic release, fire and explosion: Consequence modeling of biogas dispersion in a large urban treatment plant. International Journal of Occupational Safety and Ergonomics 2022. https://doi.org/10.1080/10803548.2022.2041846
- Schroeder V., Schalau B., Molnarne M. Explosion protection in biogas and hybrid power plants. Procedia Engineering 2014:84:259–272. https://doi.org/10.1016/j.proeng.2014.10.433
- Lauri R. Biomethane production: Pressure influence on classification of Atex zones. Chemical Engineering Transactions 2022:91. https://doi.org/10.3303/CET2291013
- Severi C. A., Pérez V., Pascual C., Muñoz R., Lebrero R. Identification of critical operational hazards in a biogas upgrading pilot plant through a multi-criteria decision-making and FTOPSIS-HAZOP approach. Chemosphere 2022:307:135845. https://doi.org/10.1016/j.chemosphere.2022.135845
- Priedniece V., Kirsanovs V., Prodanuks T., Veidenbergs I., Blumberga D. Treatment of particulate matter pollution: People’s attitude and readiness to act. Environmental and Climate Technologies 2020:24(2):231–246. https://doi.org/10.2478/rtuect-2020-0069