Have a personal or library account? Click to login

Experimental Studies of the Sound Scattering Coefficient of the Diffuser in the Reverberation Chamber

Open Access
|Sep 2023

References

  1. Statistics E. Eurostat. 1991. [Online]. [Accessed 22.09.2021]. Available: http://eppeurostateceuropaeu/portal/page/portal/statistics/a to z
  2. Miryuk O. Magnesia Composites Formation as a Result of Furniture Production Wood Waste Processing. Environmental and Climate Technologies 2022:26(1):836–847. https://doi.org/10.2478/rtuect-2022-0063
  3. Kajda-szcześniak M., Jaworski T. J., Wajda A. Possibilities of using post-consumer wood waste as a fuel in a cement plant. Architecture, Civil Engineering, Environment 2018:11(4):161–167. https://doi.org/10.21307/acee-2018-062
  4. Owoyemi J. M., Zakariya H. O., Elegbede I. O. Sustainable wood waste management in Nigeria. Environmental & Socio-economic Studies 2016:4(3):1–9. https://doi.org/10.1515/environ-2016-0012
  5. Ihnat V., Lübke H., Balberčák J., Kuňa V. Size reduction down cycling of waste wood. Review. Wood Research 2020:65:205–220. https://doi.org/10.37763/wr.1336-4561/65.2.205220
  6. Sahu K. M., Patra S., Swain S. K. Viability of Building Materials Made of Wood Waste: Sustainability and Its Performances. In Wood Waste Management and Products Singapore, Springer Nature Singapore. 2023:93–110. https://doi.org/10.1007/978-981-99-1905-5_8
  7. Indrawati S. Innovative Coco Shell Resonator (CSR) Panels for Acoustic Performance. Procedia engineering 2017:170:293–298. https://doi.org/10.1016/j.proeng.2017.03.031
  8. Lock A., Holloway D. Boundary element modelling of fractal and other enhanced bandwidth Schroeder diffuser offering comparable performance to a fractal design. Acoustics Australia 2016:44:137–147. https://doi.org/10.1007/s40857-016-0049-4
  9. Cox T., d’Antonio P. Acoustic Absorbers and Diffusers: Theory, Design and Application (3rd ed.) CRC Press, 2016. https://doi.org/10.1201/9781315369211
  10. Ajlouni R. Quasi-periodic geometry for architectural acoustics. Enquiry The ARCC Journal for Architectural Research 2018:15(1):42–61. https://doi.org/10.17831/enq:arcc.v15i1.453
  11. Yokota T., Seimiya T., Sakamoto S., Tachibana H. Difference in acoustic effect of sound diffusers due to room shapes. Acoustical Science and Technology 2000:21(5):283–285. https://doi.org/10.1250/ast.21.283
  12. Rindel J. H. The use of computer modelling in room acoustics. Journal of Vibroengineering 2000:3(4):219–224. https://www.academia.edu/51112591
  13. Picaut J., Scouarnec D. A. Numerical study of the use of acoustic diffusers to reduce noise in urban areas. Noise in the Built Environment 2010. [Online]. [Accessed: 06.08.2010]. Available: https://hal.science/hal-00508894
  14. Schröder M. R. Diffuse sound reflection by maximum-length sequences. The Journal of the Acoustical Society of America 1975:57(1):149–150. https://doi.org/10.1121/1.380425
  15. Pilch A., Kamisiński T. The effect of geometrical and material modification of sound diffusers on their acoustic parameters. Archives of Acoustics 2011:36(4):955–966. https://doi.org/10.2478/v10168-011-0065-1
  16. Vorländer M., Mommertz E. Definition and measurement of random-incidence scattering coefficients. Applied Acoustics 2000:60(2):187–199. https://doi.org/10.1016/s0003-682x(99)00056-0
  17. De Beelde B., Almarcha A., Plets D., Joseph W. V-band channel modelling, performance measurements, and coverage. Prediction for Indoor Residential Environments. Electronics 2022:11(4):659. https://doi.org/10.3390/electronics11040659
  18. Zhu X., Kang J., Ma H. The impact of surface scattering on reverberation time in differently shaped spaces. Applied Sciences 2020:10(14):4880. https://doi.org/10.3390/app10144880
  19. Bistafa S. R., Bradley J. S. Reverberation time and maximum background-noise level for classrooms from a comparative study of speech intelligibility metrics. Journal of the Acoustical Society of America 2000:107(2):861–875. https://doi.org/10.1121/1.428268
  20. Holloway C. L., Shah H. A., Pirkl R. J., Young W. F., Hill D. A., Ladbury J. Reverberation chamber techniques for determining the radiation and total efficiency of antennas. IEEE Transactions on Antennas and Propagation 2012:60(4):1758–1770. https://doi:10.1109/TAP.2012.2186263
  21. Xu Q. Anechoic and Reverberation Chamber Design and Measurements. The University of Liverpool (United Kingdom). 2015. https://doi:10.17638/02050739
  22. Rey Tormos R. M., Alba Fernández J., Bertó Carbó L., Gregori A. Small-sized reverberation chamber for the measurement of sound absorption. Materiales de Construcción 2017:67(328):1–9. https://doi.org/10.3989/mc.2017.07316
  23. Daian G., Ozarska B. Wood waste management practices and strategies to increase sustainability standards in the Australian wooden furniture manufacturing sector. Journal of Cleaner Production 2009:17(17):1594–1602. https://doi.org/10.1016/j.jclepro.2009.07.008
  24. Berardi U., Iannace G. Acoustic characterization of natural fibers for sound absorption applications. Building and Environment 2015:94(P2):840–852. https://doi.org/10.1016/j.buildenv.2015.05.029
  25. Asdrubali F., Schiavoni S., Horoshenkov K. A review of sustainable materials for acoustic applications. Building Acoustics 2012:19(4):283–311. https://doi.org/10.1260/1351-010x.19.4.283
  26. Demirbas A., Ahmad W., Alamoudi R., Sheikh M. Sustainable charcoal production from biomass. Energy Sources, Part A: Recovery, Utiliza tion, and Environmental Effects 2016:38(13):1882–1889. https://doi.org/10.1080/15567036.2014.1002955
  27. Pastor-Villegas J., Pastor-Valle J., Rodríguez J. M., García M.G. Study of commercial wood charcoals for the preparation of carbon adsorbents. Journal of Analytical and Applied Pyrolysis 2006:76(1–2):103–108. https://doi.org/10.1016/j.jaap.2005.08.002
  28. Suh J. G., Baik K. min., Kim Y. T., Jung S. S. Measurement and calculation of the sound absorption coefficient of pine wood charcoal. Journal of the Korean Physical Society 2013:63:1576–1582. https://doi.org/10.3938/jkps.63.1576
  29. Khrystoslavenko O., Grubliauskas R. Investigation of Acoustic Efficiency of Wood Charcoal in Impedance Tube for Usage in Sound-Reflective Devices. Sustainability 2022:14(15):9431. https://doi.org/10.3390/su14159431
  30. Khrystoslavenko O., Astrauskas T., Grubliauskas R. Sound Absorption Properties of Charcoal Made from Wood Waste. Sustainability 2023:15(10):8196. https://doi.org/10.3390/su15108196
  31. Lee H. H. Gas adsorbing and sound absorbing composite structure of activated charcoal-wooden material composites for improving indoor air quality and re-moving radon gas, and manufacturing method thereof. U.S. Patent No. 9,278,304. Published 2016-05-08. [Online]. [Accessed: 22.10.2012]. Available: https://patents.google.com/patent/US9278304B2/en
  32. Romadhona I. C., Yahya I. On the use of coupled cavity Helmholtz resonator inclusion for improving absorption performance of wooden sound diffuser element. Procedia Engineering 2017:170:458–462. https://doi.org/10.1016/j.proeng.2017.03.073
  33. Jiménez N., Cox T. J, Romero-García V., Groby J. P. Meta diffusers: Deep-subwavelength sound diffusers. Scientific Reports 2017:7(1):1–12. https://doi.org/10.1038/s41598-017-05710-5
  34. Schroeder M. R. Binaural dissimilarity and optimum ceilings for concert halls: More lateral sound diffusion. The Journal of the Acoustical Society of America 1979:65(4):958–963. https://doi.org/10.1121/1.382601
  35. BS ISO 17497-1:2004+A1:2014. Acoustics. Sound-scattering properties of surfaces – Part 1: Measurement of the random-incidence scattering coefficient in a reverberation-room. International Organization for Standardization: Geneva, Switzerland. Published online 2004. https://doi.org/10.3403/03083510
DOI: https://doi.org/10.2478/rtuect-2023-0034 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 464 - 475
Submitted on: Mar 25, 2023
Accepted on: Jun 29, 2023
Published on: Sep 21, 2023
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2023 Olga Khrystoslavenko, Raimondas Grubliauskas, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.