Miryuk O. Magnesia Composites Formation as a Result of Furniture Production Wood Waste Processing. Environmental and Climate Technologies 2022:26(1):836–847. https://doi.org/10.2478/rtuect-2022-0063
Kajda-szcześniak M., Jaworski T. J., Wajda A. Possibilities of using post-consumer wood waste as a fuel in a cement plant. Architecture, Civil Engineering, Environment 2018:11(4):161–167. https://doi.org/10.21307/acee-2018-062
Owoyemi J. M., Zakariya H. O., Elegbede I. O. Sustainable wood waste management in Nigeria. Environmental & Socio-economic Studies 2016:4(3):1–9. https://doi.org/10.1515/environ-2016-0012
Sahu K. M., Patra S., Swain S. K. Viability of Building Materials Made of Wood Waste: Sustainability and Its Performances. In Wood Waste Management and Products Singapore, Springer Nature Singapore. 2023:93–110. https://doi.org/10.1007/978-981-99-1905-5_8
Lock A., Holloway D. Boundary element modelling of fractal and other enhanced bandwidth Schroeder diffuser offering comparable performance to a fractal design. Acoustics Australia 2016:44:137–147. https://doi.org/10.1007/s40857-016-0049-4
Ajlouni R. Quasi-periodic geometry for architectural acoustics. Enquiry The ARCC Journal for Architectural Research 2018:15(1):42–61. https://doi.org/10.17831/enq:arcc.v15i1.453
Yokota T., Seimiya T., Sakamoto S., Tachibana H. Difference in acoustic effect of sound diffusers due to room shapes. Acoustical Science and Technology 2000:21(5):283–285. https://doi.org/10.1250/ast.21.283
Picaut J., Scouarnec D. A. Numerical study of the use of acoustic diffusers to reduce noise in urban areas. Noise in the Built Environment 2010. [Online]. [Accessed: 06.08.2010]. Available: https://hal.science/hal-00508894
Schröder M. R. Diffuse sound reflection by maximum-length sequences. The Journal of the Acoustical Society of America 1975:57(1):149–150. https://doi.org/10.1121/1.380425
Pilch A., Kamisiński T. The effect of geometrical and material modification of sound diffusers on their acoustic parameters. Archives of Acoustics 2011:36(4):955–966. https://doi.org/10.2478/v10168-011-0065-1
Vorländer M., Mommertz E. Definition and measurement of random-incidence scattering coefficients. Applied Acoustics 2000:60(2):187–199. https://doi.org/10.1016/s0003-682x(99)00056-0
De Beelde B., Almarcha A., Plets D., Joseph W. V-band channel modelling, performance measurements, and coverage. Prediction for Indoor Residential Environments. Electronics 2022:11(4):659. https://doi.org/10.3390/electronics11040659
Zhu X., Kang J., Ma H. The impact of surface scattering on reverberation time in differently shaped spaces. Applied Sciences 2020:10(14):4880. https://doi.org/10.3390/app10144880
Bistafa S. R., Bradley J. S. Reverberation time and maximum background-noise level for classrooms from a comparative study of speech intelligibility metrics. Journal of the Acoustical Society of America 2000:107(2):861–875. https://doi.org/10.1121/1.428268
Holloway C. L., Shah H. A., Pirkl R. J., Young W. F., Hill D. A., Ladbury J. Reverberation chamber techniques for determining the radiation and total efficiency of antennas. IEEE Transactions on Antennas and Propagation 2012:60(4):1758–1770. https://doi:10.1109/TAP.2012.2186263
Rey Tormos R. M., Alba Fernández J., Bertó Carbó L., Gregori A. Small-sized reverberation chamber for the measurement of sound absorption. Materiales de Construcción 2017:67(328):1–9. https://doi.org/10.3989/mc.2017.07316
Daian G., Ozarska B. Wood waste management practices and strategies to increase sustainability standards in the Australian wooden furniture manufacturing sector. Journal of Cleaner Production 2009:17(17):1594–1602. https://doi.org/10.1016/j.jclepro.2009.07.008
Berardi U., Iannace G. Acoustic characterization of natural fibers for sound absorption applications. Building and Environment 2015:94(P2):840–852. https://doi.org/10.1016/j.buildenv.2015.05.029
Asdrubali F., Schiavoni S., Horoshenkov K. A review of sustainable materials for acoustic applications. Building Acoustics 2012:19(4):283–311. https://doi.org/10.1260/1351-010x.19.4.283
Demirbas A., Ahmad W., Alamoudi R., Sheikh M. Sustainable charcoal production from biomass. Energy Sources, Part A: Recovery, Utiliza tion, and Environmental Effects 2016:38(13):1882–1889. https://doi.org/10.1080/15567036.2014.1002955
Pastor-Villegas J., Pastor-Valle J., Rodríguez J. M., García M.G. Study of commercial wood charcoals for the preparation of carbon adsorbents. Journal of Analytical and Applied Pyrolysis 2006:76(1–2):103–108. https://doi.org/10.1016/j.jaap.2005.08.002
Suh J. G., Baik K. min., Kim Y. T., Jung S. S. Measurement and calculation of the sound absorption coefficient of pine wood charcoal. Journal of the Korean Physical Society 2013:63:1576–1582. https://doi.org/10.3938/jkps.63.1576
Khrystoslavenko O., Grubliauskas R. Investigation of Acoustic Efficiency of Wood Charcoal in Impedance Tube for Usage in Sound-Reflective Devices. Sustainability 2022:14(15):9431. https://doi.org/10.3390/su14159431
Khrystoslavenko O., Astrauskas T., Grubliauskas R. Sound Absorption Properties of Charcoal Made from Wood Waste. Sustainability 2023:15(10):8196. https://doi.org/10.3390/su15108196
Lee H. H. Gas adsorbing and sound absorbing composite structure of activated charcoal-wooden material composites for improving indoor air quality and re-moving radon gas, and manufacturing method thereof. U.S. Patent No. 9,278,304. Published 2016-05-08. [Online]. [Accessed: 22.10.2012]. Available: https://patents.google.com/patent/US9278304B2/en
Romadhona I. C., Yahya I. On the use of coupled cavity Helmholtz resonator inclusion for improving absorption performance of wooden sound diffuser element. Procedia Engineering 2017:170:458–462. https://doi.org/10.1016/j.proeng.2017.03.073
Jiménez N., Cox T. J, Romero-García V., Groby J. P. Meta diffusers: Deep-subwavelength sound diffusers. Scientific Reports 2017:7(1):1–12. https://doi.org/10.1038/s41598-017-05710-5
Schroeder M. R. Binaural dissimilarity and optimum ceilings for concert halls: More lateral sound diffusion. The Journal of the Acoustical Society of America 1979:65(4):958–963. https://doi.org/10.1121/1.382601
BS ISO 17497-1:2004+A1:2014. Acoustics. Sound-scattering properties of surfaces – Part 1: Measurement of the random-incidence scattering coefficient in a reverberation-room. International Organization for Standardization: Geneva, Switzerland. Published online 2004. https://doi.org/10.3403/03083510