References
- El-Shafei R, Hegazy H, Acharya B. A Review of Antiviral and Antioxidant Activity of Bioactive Metabolite of Macroalgae within an Optimized Extraction Method. Energies 2021:14(11):3092. https://doi.org/10.3390/en14113092
- Menaa F., Wijesinghe U., Thiripuranathar G., Althobaiti N. A., Albalawi A. E., Ali Khan B., Menaa B. Marine Algae-Derived Bioactive Compounds: A New Wave of Nanodrugs? Marine Drugs 2021:19(9):484. https://doi.org/10.3390/md19090484
- Bertolini M., Conti F. Capture, storage and utilization of carbon dioxide by microalgae and production of biomaterials. Environmental and Climate Technologies 2021:25(1):574–586. https://doi.org/10.2478/rtuect-2021-0042
- Bertolini M., Conti F. Alagae culture conditions and process parameters for phycoremediation and biomaterials production. Environmental and Climate Technologies 2022:26(1):1092–1105. https://doi.org/10.2478/rtuect-2022-0082
- Ferdous U. T., Yusof Z. N. B. Medicinal Prospects of Antioxidants from Algal Sources in Cancer Therapy. Frontiers in Pharmacology 2021:12:593116. https://doi.org/10.3389/fphar.2021.593116
- Rani S., Gunjyal N., Ojha C. S. P., Singh R. P. Review of challenges for algae-based wastewater treatment: strain selection, wastewater characteristics, abiotic, and biotic factors. Journal of Hazardous, Toxic, and Radioactive Waste 2021:25(2):03120004. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000578
- Menaa F., Wijesinghe P. A. U. I., Thiripuranathar G., Uzair B., Iqbal H., Khan B. A., Menaa B. Ecological and Industrial Implications of Dynamic Seaweed-Associated Microbiota Interactions. Marine Drugs 2020:18(12):641. https://doi.org/10.3390/md18120641
- Zozaya-Valdés E., Roth-Schulze A. J., Thomas T. Effects of temperature stress and aquarium conditions on the red macroalga Delisea pulchra and its associated microbial community. Frontiers in Microbiology 2016:7:161. https://doi.org/10.3389/fmicb.2016.00161
- Khan M. l., Shin J. H., Kim J. D. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories 2018:17:36. https://doi.org/10.1186/s12934-018-0879-x
- de Morais M. G., Vaz B. D. S., de Morais E. G., Costa J. A. V. Biologically active metabolites synthesized by microalgae. BioMed Research International 2015:435265. https://doi.org/10.1155/2015/835761
- Michalak I., Chojnacka K. Algae as production systems of bioactive compounds. Engineering in Life Sciences 2015:15(2):160–176. https://doi.org/10.1002/elsc.201400191
- Dai N., Wang Q., Xu B., Chen H. Remarkable natural biological resource of algae for medical applications. Frontiers in Marine Science 2022:9:1060. https://doi.org/10.3389/fmars.2022.912924
- Aziz E., Batool R., Khan M. U., Rauf A., Akhtar W., Heydari M., Rehman S., Shahzad T., Malik A., Mosavat S. H., Plygun S., Shariati M. A. An overview on red algae bioactive compounds and their pharmaceutical applications, Journal of Complementary & Integrative Medicine 2020:17. https://doi.org/10.1515/jcim-2019-0203
- Zhuang D., He N., Khoo K. S., Ng E. P., Chew K. W., Ling T. C. Application progress of bioactive compounds in microalgae on pharmaceutical and cosmetics. Chemosphere 2022:291(Pt2):132932. https://doi.org/10.1016/j.chemosphere.2021.132932
- Liu X., Yuan W. Q., Sharma-Shivappa R., van Zanten J. Antioxidant activity of phlorotannins from Brown algae. International Journal of Agricultural and Biological Engineering 2017:10(6):184–191. https://doi.org/10.25165/j.ijabe.20171006.2854
- Yap W. F., Tay V., Tan S. H., Yow Y. Y., Chew J. Decoding antioxidant and antibacterial potentials of Malaysian green seaweeds: Caulerpa racemosa and Caulerpa lentillifera. Antibiotics 2019:8(3):152. https://doi.org/10.3390/antibiotics8030152
- Wang L., Jayawardena T. U., Yang H. W., Lee H. G., Kang M.-C., Sanjeewa K. K. A., Oh J. Y., Jeon Y.-J. Isolation, Characterization, and Antioxidant Activity Evaluation of a Fucoidan from an Enzymatic Digest of the Edible Seaweed. Hizikia fusiforme. Antioxidants (Basel) 2020:9(5):363. https://doi.org/10.3390/antiox9050363
- Besednova N. N., Andryukov B. G., Zaporozhets T. S., Kryzhanovsky S. P., Fedyanina L. N., Kuznetsova T. A., Zvyagintseva T. N., Shchelkanov M. Y. Antiviral Effects of Polyphenols from Marine Algae. Biomedicines 2021:9(2):200. https://doi.org/10.3390/biomedicines9020200
- Park J. Y., Yuk H. J., Ryu H. W., Lim S. H., Kim K. S., Park K. H., Ryu Y. B., Lee W. S. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry 2017:32(1):504–515. https://doi.org/10.1080/14756366.2016.1265519
- Lomartire S., Gonçalves A. M. M. An Overview of Potential Seaweed-Derived Bioactive Compounds for Pharmaceutical Applications. Marine Drugs 2022:20(2):141. https://doi.org/10.3390/md20020141
- El-Shafay S. M., Ali S. S., El-Sheekh M. M. Antimicrobial activity of some seaweeds species from Red sea, against multidrug resistant bacteria. The Egyptian Journal of Aquatic Research 2016:42(1):65–74. https://doi.org/10.1016/j.ejar.2015.11.006
- Shannon E., Abu-Ghannam N., Antibacterial Derivatives of Marine Algae: An Overview of Pharmacological Mechanisms and Applications. Marine Drugs 2016:14(4):8. https://doi.org/10.3390/md14040081
- Souza R. B., et al. In vitro activities of kappa-carrageenan isolated from red marine alga Hypnea musciformis: Antimicrobial, anticancer and neuroprotective potential. International Journal of Biological Macromolecules 2018:112:1248–1256. https://doi.org/10.1016/j.ijbiomac.2018.02.029
- Ayyad S. E., Al-Footy K. O., Alarif W. M., Sobahi T. R., Bassaif S. A., Makki M. S., Asiri A. M., Al Halwani A. Y., Badria A. F., Badria F. A. Bioactive C15 acetogenins from the red alga Laurencia obtusa. Chemical & Pharmaceutical Bulletin 2011:59(10):1294–1298. https://doi.org/10.1248/cpb.59.1294
- Pradhan B., et al. Bioactive Metabolites from Marine Algae as Potent Pharmacophores against Oxidative Stress-Associated Human Diseases: A Comprehensive Review. Molecules 2021:26(1):37. https://doi.org/10.3390/molecules26010037 .
- Mateos R., Pérez-Correa J. R., Domínguez H. Bioactive Properties of Marine Phenolics. Marine Drugs 2020:18(10):501. https://doi.org/10.3390/md18100501
- Sharifuddin Y., Chin Y. X., Lim P. E., Phang S. M. Potential Bioactive Compounds from Seaweed for Diabetes Management. Marine Drugs 2015:13(8):5447–5491. https://doi.org/10.3390/md13085447
- Di Meglio L. A., Evans-Molina C., Oram R. A. Type 1 diabetes. The Lancet 2018:391(10138):2449–2462. https://doi.org/10.1016/S0140-6736(18)31320-5
- Italian National Institute of Health. 2023. [Online]. [Accessed: 12.06.2023]. Available: https://www.iss.it/en/home
- Gunathilaka T. L., Samarakoon K., Ranasinghe P., Peiris L. D. C. Antidiabetic potential of marine brown algae – a mini review. Journal of Diabetes Research 2020:1230218. https://doi.org/10.1155/2020/1230218
- Lee S. H., Jeon Y. J. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia 2013:86:129–136. https://doi.org/10.1016/j.fitote.2013.02.013
- Abo-Shady A. M., Gheda S. F., Ismail G. A., Cotas J., Pereira L., Abdel-Karim O. H. Antioxidant and Antidiabetic Activity of Algae. Life 2023:13(2):460. https://doi.org/10.3390/life13020460
- Yuan Y., Zheng Y., Zhou J., Geng Y., Zou P., Li Y., Zhang C. Polyphenol-Rich Extracts from Brown Macroalgae Lessonia trabeculate Attenuate Hyperglycemia and Modulate Gut Microbiota in High-Fat Diet and Streptozotocin-Induced Diabetic Rats. Journal of Agricultural and Food Chemistry 2019:67(45):12472–12480. https://doi.org/10.1021/acs.jafc.9b05118
- Conti F., Wiedemann L., Sonnleitner M., Goldbrunner M. Thermal behaviour of viscosity of aqueous cellulose solutions to emulate biomass in anaerobic digesters. New Journal of Chemistry 2018:42(2):1099–1104. https://doi.org/10.1039/c7nj03199h
- Wiedemannn L., Conti F., Sonnleitner M., Saidi A., Goldbrunner M. Investigation and optimization of the mixing in a biogas digester with a laboratory experiment and an artificial model substrate. 25th European Biomass Conference and Exhibition Proceedings 2017:889–892. https://doi.org/10.5071/25thEUBCE2017-2CV.4.14
- Conti F., Wiedemann L., Saidi A., Sonnleitner M., Goldbrunner M. Mixing of a model substrate in a scale-down laboratory digester and processing with a computational fluid dynamics model. 26th European Biomass Conference and Exhibition Proceedings 2018:811–815. https://doi.org/10.5071/26thEUBCE2018-2CV.5.34