References
- McNulty M. J., et al. Molecular pharming to support human life on the moon, mars, and beyond. Critical Reviews in Biotechnology 2021:41(6):849–864. https://doi.org/10.1080/07388551.2021.1888070
- Fabris M., et al. Emerging Technologies in Algal Biotechnology: Toward the Establishment of a Sustainable, Algae-Based Bioeconomy. Frontiers in Plant Science 2020:11. https://doi.org/10.3389/fpls.2020.00279
- Clément G. Fundamentals of Space Medicine. Springer Science & Business Media, 2011. https://doi.org/10.1007/978-1-4419-9905-4
- Zubrin R. Why We Earthlings Should Colonize Mars! Theology and Science 2019:17(3):305–316. https://doi.org/10.1080/14746700.2019.1632519
- Geology of the InSight landing site on Mars | Nature Communications. [Online]. [Accessed: 31.03.2023]. Available: https://www.nature.com/articles/s41467-020-14679-1
- Taylor G. J. The bulk composition of Mars. Geochemistry 2013:73(4):401–420. https://doi.org/10.1016/j.chemer.2013.09.006
- Schulze-Makuch D., Davies P. Destination Mars: Colonization via Initial One-way Missions. Journal of the British Interplanetary Society 2013:66:11–14.
- Zubrin R. The Economic Viability of Mars Colonization. In Deep Space Commodities, T. James, Ed., Cham: Springer International Publishing, 2018:159–180. https://doi.org/10.1007/978-3-319-90303-3_12
- Zubrin R. The Case for Colonizing Mars. Ad Astra: The Magazine of the National Space Society 1996. [Online]. [Accessed: 31.03.2023]. Available: https://home.ifa.hawaii.edu/users/meech/a281/handouts/mars_case.pdf
- Stoker C. R., McKay C. P., Haberle R. M., Andersen D. T. Science strategy for human exploration of Mars. Advances in Space Research 1992:12(4):79–90. https://doi.org/10.1016/0273-1177(92)90159-U
- Uphoff C., Roberts P. h., Friedman L. d. Orbit Design Concepts for Jupiter Orbiter Missions. Journal of Spacecraft and Rockets 1976:13(6):348–355. https://doi.org/10.2514/3.57096
- Petrescu R. V., Aversa R., Apicella A., Petrescu F. I. NASA Selects Concepts for a New Mission to Titan, the Moon of Saturn. Journal of Aircraft and Spacecraft Technology 2018:2(1). https://doi.org/10.3844/jastsp.2018.40.52
- Phillips C. B., Pappalardo R. T. Europa Clipper Mission Concept: Exploring Jupiter’s Ocean Moon. Eos, Transactions American Geophysical Union 2014:95(20):165–167. https://doi.org/10.1002/2014EO200002
- González-Galindo F., Forget F., López-Valverde M. A., Angelats i Coll M., Millour E. A ground‐to‐exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures. Journal of Geophysical Research: Planets 2009:114(E4). https://doi.org/10.1029/2008JE003246
- Gierasch P. J., Toon O. B. Atmospheric Pressure Variation and the Climate of Mars. Journal of the Atmospheric Sciences 1973:30(8):1502–1508. https://doi.org/10.1175/1520-0469(1973)030<1502:APVATC>2.0.CO;2
- Nazari-Sharabian M., Aghababaei M., Karakouzian M., Karami M. Water on Mars—A Literature Review. Galaxies 2020:8(2):40. https://doi.org/10.3390/galaxies8020040
- Levchenko I., Xu S., Mazouffre S., Keidar M., Bazaka K. Mars Colonization: Beyond Getting There. In Terraforming Mars, John Wiley & Sons, Ltd, 2021:73–98. https://doi.org/10.1002/9781119761990.ch5
- esa.int. The European Space Agency. The European Space Agency. [Online]. [Accessed: 27.04.2023]. Available: https://www.esa.int/
- mars.nasa.gov. Missions. Mars Exploration Section. NASA Mars Exploration. [Online]. [Accessed: 27.04.2023]. Available: https://mars.nasa.gov/mars-exploration/missions?page=0&per_page=99&order=date+desc&search
- spacex.com. SpaceX Human Spaceflight. Mars. Spacex. [Online]. [Accessed: 27.04.2023]. Available: https://www.spacex.com/human-spaceflight/mars/
- mars.nasa.gov. Mars 2020. Mission Perseverance rover blog. NASA Mars 2020 Mission. [Online]. [Accessed: 27.04.2023]. Available: https://mars.nasa.gov/mars2020/mission/status/
- mars.nasa.gov. Science and Exploration. ExoMars mission. The European Space Agency. [Online]. [Accessed: 27.04.2023]. Available: https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Exploration/ExoMars_mission
- Trainer M. G., et al. Seasonal Variations in Atmospheric Composition as Measured in Gale Crater, Mars. Journal of Geophysical Research: Planets 2019:124(11):3000–3024. https://doi.org/10.1029/2019JE006175
- Drysdale A. E., Ewert M. K., Hanford A. J. Life support approaches for Mars missions. Advances in Space Research 2003:31(1):51–61. https://doi.org/10.1016/S0273-1177(02)00658-0
- Jones H. W., Hodgson E. W., Kliss M. H. Life Support for Deep Space and Mars. In International Conference on Environmental Systems. Tucson, Arizona, Jul. 2014. [Online]. [Accessed: 27.04.2023]. Available: https://ttu-ir.tdl.org/bitstream/handle/2346/59729/ICES-2014-74.pdf?sequence=1&isAllowed=y
- Appelbaum J., Flood D. J. Solar radiation on Mars. Solar Energy 1990:45(6):353–363. https://doi.org/10.1016/0038-092X(90)90156-7
- Lucchitta B. K. Mars and Earth: Comparison of cold-climate features. Icarus 1981:45(2):264–303. https://doi.org/10.1016/0019-1035(81)90035-X
- Fogg M. J. Terraforming Mars: A review of current research. Advances in Space Research 1998:22(3):415–420. https://doi.org/10.1016/S0273-1177(98)00166-5
- Szocik K. Should and could humans go to Mars? Yes, but not now and not in the near future. Futures 2019:105:54–66. https://doi.org/10.1016/j.futures.2018.08.004
- Berliner A. J., et al. Towards a Biomanufactory on Mars. Frontiers in Astronomy and Space Sciences 2021:8. [Online]. [Accessed: 27.04.2023]. Available: https://www.frontiersin.org/articles/10.3389/fspas.2021.711550
- Towards synthetic biological approaches to resource utilization on space missions. [Online]. [Accessed: 25.01.2023]. Available: https://royalsocietypublishing.org/doi/epdf/10.1098/rsif.2014.0715
- Menezes A. A., Montague M. G., Cumbers J., Hogan J. A., Arkin A. P. Grand challenges in space synthetic biology. Journal of The Royal Society Interface 2015:12(113):20150803. https://doi.org/10.1098/rsif.2015.0803
- What Would Battery Manufacturing Look Like on the Moon and Mars? ACS Energy Letters. [Online]. [Accessed: 31.03.2023]. Available: https://pubs.acs.org/doi/10.1021/acsenergylett.2c02743
- Douglas G. L., Zwart S. R., Smith S. M. Space Food for Thought: Challenges and Considerations for Food and Nutrition on Exploration Missions. The Journal of Nutrition 2020:150(9):2242–2244. https://doi.org/10.1093/jn/nxaa188
- Mitchell C. Bioregenerative life-support systems. The American Journal of Clinical Nutrition 1994:60(5):820S–824S. https://doi.org/10.1093/ajcn/60.5.820S
- Wamelink G. W. W., Frissel J. Y., Krijnen W. H. J., Verwoert M. R., Goedhart P. W. Can Plants Grow on Mars and the Moon: A Growth Experiment on Mars and Moon Soil Simulants. PLOS ONE 2014:9(8):e103138. https://doi.org/10.1371/journal.pone.0103138
- Tang H., Rising H. H., Majji M., Brown R. D. Long-Term Space Nutrition: A Scoping Review. Nutrients 2022:14(1). https://doi.org/10.3390/nu14010194
- Cannon K. M., Britt, D. T. Feeding One Million People on Mars. New Space 2019:7(4):245–254. https://doi.org/10.1089/space.2019.0018
- MacElroy R. D., Bredt J. Current concepts and future directions of CELSS. Advances in Space Research 1984:4(12):221–229. https://doi.org/10.1016/0273-1177(84)90566-0
- Chow Y. N., Lee L. K., Zakaria N., Foo K. Y. New emerging hydroponic system. Symposium on Innovation and Creativity 2017:2:1–4.
- Sadler P., et al. Bio-regenerative Life Support Systems for Space Surface Applications. In 41st International Conference on Environmental Systems. Portland, Oregon: American Institute of Aeronautics and Astronautics, Jul. 2011. https://doi.org/10.2514/6.2011-5133
- Sanders G. B., et al., Results from the NASA Capability Roadmap Team for In-Situ Resource Utilization (ISRU). Presented at the International Lunar Conference 2005, Toronto, Sep. 2005. [Online]. [Accessed: 31.03.2023]. Available: https://ntrs.nasa.gov/citations/20110024178
- Berla B. M., Saha R., Immethun C. M., Maranas C. D., Moon T. S., Pakrasi H. B. Synthetic biology of cyanobacteria: unique challenges and opportunities. Front. Microbiol. 2013:4. https://doi.org/10.3389/fmicb.2013.00246
- Mars Solar Power. 2nd International Energy Conversion Engineering Conference (IECEC). Providence, Rhode Islands, 2004. [Online]. [Accessed: 31.03.2023]. Available: https://arc.aiaa.org/doi/abs/10.2514/6.2004-5555
- Space nuclear power. An overview. Journal of Propulsion and Power 1996:12(5). https://doi.org/10.2514/3.24121
- Fogg M. J. The utility of geothermal energy on mars. Journal of the British Interplanetary Society 1996:49:403–422.
- Brennan L., Owende P. Biofuels from microalgae – A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews 2010:14(2):557–577. https://doi.org/10.1016/j.rser.2009.10.009
- Kruyer N. S., Realff M. J., Sun W., Genzale C. L., Peralta-Yahya P. Designing the bioproduction of Martian rocket propellant via a biotechnology-enabled in situ resource utilization strategy. Nature Communications 2021:12:6166. https://doi.org/10.1038/s41467-021-26393-7
- Fahrion J., Mastroleo F., Dussap C.-G., Leys N. Use of Photobioreactors in Regenerative Life Support Systems for Human Space Exploration. Frontiers in Microbiology 2021:12. https://doi.org/10.3389/fmicb.2021.699525
- Donald Rapp, Ed., Use of extraterrestrial resources for human space missions to moon or mars. Second. New York, NY: Springer Berlin Heidelberg, 2018. https://doi.org/10.1007/978-3-319-72694-6
- Mapstone L. J., Leite M. N., Purton S., Crawford I. A., Dartnell L. Cyanobacteria and microalgae in supporting human habitation on Mars. Biotechnology Advances 2022:59:107946. https://doi.org/10.1016/j.biotechadv.2022.107946
- Murukesan G., et al. Pressurized Martian-Like Pure CO2 Atmosphere Supports Strong Growth of Cyanobacteria, and Causes Significant Changes in their Metabolism. Origins of Life and Evolution of Biospheres 2016:46(1):119–131. https://doi.org/10.1007/s11084-015-9458-x
- Keller R., Goli K., Porter W., Alrabaa A., Jones J. A. Cyanobacteria and Algal-Based Biological Life Support System (BLSS) and Planetary Surface Atmospheric Revitalizing Bioreactor Brief Concept Review. Life 2023:13(3):816. https://doi.org/10.3390/life13030816
- Uyeda C., Thangavelu M. Creating Human Experience through Food in Space (C.H.E.F.). In AIAA SCITECH 2023 Forum, American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2023-0264
- Miranda C. SARSEF Science and Engineering Fair 2023.
- Menezes A. A., Cumbers J., Hogan J. A., Arkin A. P. Towards synthetic biological approaches to resource utilization on space missions. J. R. Soc. Interface 2015:12(102):20140715. https://doi.org/10.1098/rsif.2014.0715
- Averesch N. J. H. Choice of Microbial System for In-Situ Resource Utilization on Mars. Front. Astron. Space Sci. 2021:8:700370. https://doi.org/10.3389/fspas.2021.700370
- Tarasashvili M. Mars Terraformation Autotrophs – Cultivation and Transplantation Methods. 2015.
- Watkins P., Hughes J., Gamage T. V., Knoerzer K., Ferlazzo M. L., Banati R. B. Long term food stability for extended space missions: a review. Life Sciences in Space Research 2022:32:79–95. https://doi.org/10.1016/j.lssr.2021.12.003
- Zabel P., Bamsey M., Schubert D., Tajmar M. Review and analysis of over 40 years of space plant growth systems. Life Sciences in Space Research 2016:10:1–16. https://doi.org/10.1016/j.lssr.2016.06.004
- Asao T. Hydroponics: A Standard Methodology for Plant Biological Researches. BoD – Books on Demand, 2012. https://doi.org/10.5772/2215
- Srivani P., Yamuna Devi C., Manjula C. H. A Controlled Environment Agriculture with Hydroponics: Variants, Parameters, Methodologies and Challenges for Smart Farming. IEEE Conference Publication. IEEE Xplore. [Online]. [Accessed: 31.03.2023]. Available: https://ieeexplore.ieee.org/abstract/document/9092043
- Ferl R. J., Schuerger A. C., Paul A.-L., Gurley W. B., Corey K., Bucklin R. Plant adaptation to low atmospheric pressures: potential molecular responses. Life Support & Biosphere Science 2002:8(2):93–101.
- Exploration Systems Requirements to Establish a Sustainable Human Presence on Mars. AIAA SPACE Forum. [Online]. [Accessed: 31.03.2023]. Available: https://arc.aiaa.org/doi/10.2514/6.2017-5367
- Gurlek C., Yarkent C., Oral I., Kose A., Oncel S. S. Nutraceutical Aspects of Microalgae: Will Our Future Space Foods Be Microalgae Based? In Handbook of Algal Technologies and Phytochemicals, CRC Press, 2019. https://doi.org/10.1201/9780429054242-18
- Kuhad R. C., Singh A., Tripathi K. K., Saxena R. K., Eriksson K.-E. L. Microorganisms as an Alternative Source of Protein. Nutrition Reviews 1997:55(3):65–75. https://doi.org/10.1111/j.1753-4887.1997.tb01599.x
- Moreira J. B. et al. Microalgae Polysaccharides: An Alternative Source for Food Production and Sustainable Agriculture. Polysaccharides 2022:3(2). https://doi.org/10.3390/polysaccharides3020027
- Vazhappilly R., Chen F. Heterotrophic Production Potential of Omega-3 Polyunsaturated Fatty Acids by Microalgae and Algae-like Microorganisms. Botanica Marina 1998:41:1–6:553–558. https://doi.org/10.1515/botm.1998.41.1-6.553
- Vaz B. da S., Moreira J. B., de Morais M. G., Costa J. A. V. Microalgae as a new source of bioactive compounds in food supplements. Current Opinion in Food Science 2016:7:73–77. https://doi.org/10.1016/j.cofs.2015.12.006
- Clauwaert P., et al. Nitrogen cycling in Bioregenerative Life Support Systems: Challenges for waste refinery and food production processes. Progress in Aerospace Sciences 2017:91:87–98. https://doi.org/10.1016/j.paerosci.2017.04.002
- Montague M., et al. The Role of Synthetic Biology for In Situ Resource Utilization (ISRU). Astrobiology 2012:12(12):1135–1142. https://doi.org/10.1089/ast.2012.0829
- Verseux C., Baqué M., Lehto K., de Vera J.-P. P., Rothschild L. J., Billi D. Sustainable life support on Mars – the potential roles of cyanobacteria. International Journal of Astrobiology 2016:15(1):65–92. https://doi.org/10.1017/S147355041500021X
- Verseux C., et al. A Low-Pressure, N2/CO2 Atmosphere Is Suitable for Cyanobacterium-Based Life-Support Systems on Mars. Frontiers in Microbiology 2021:12. https://doi.org/10.3389/fmicb.2021.611798
- Bothe H., Schmitz O., Yates M. G., Newton W. E. Nitrogen Fixation and Hydrogen Metabolism in Cyanobacteria. Microbiol Mol Biol Rev 2010:74(4):529–551. https://doi.org/10.1128/MMBR.00033-10
- Guerra V., Silva T., Guaitella O. Living on mars: how to produce oxygen and fuel to get home. Europhysics News 2018:49(3):15–18. https://doi.org/10.1051/epn/2018302
- The renaissance of the Sabatier reaction and its applications on Earth and in space. Nature Catalysis. [Online]. [Accessed: 31.03.2023]. Available: https://www.nature.com/articles/s41929-019-0244-4
- Zheng Y., Chen Z., Zhang J. Solid Oxide Electrolysis of H2O and CO2 to Produce Hydrogen and Low-Carbon Fuels. Electrochem. Energ. Rev. 2021:4(3):508–517. https://doi.org/10.1007/s41918-021-00097-4
- Slenzka K., Kempf J. Bio-ISRU Concepts using microorganisms to release O2 and H2 on Moon and Mars. 2010:38:3.
- Zaccardi F., Toto E., Santonicola M. G., Laurenzi S. 3D printing of radiation shielding polyethylene composites filled with Martian regolith simulant using fused filament fabrication. Acta Astronautica 2022:190:1–13. https://doi.org/10.1016/j.actaastro.2021.09.040
- Onen Cinar S., Chong Z. K., Kucuker M. A., Wieczorek N., Cengiz U., Kuchta K. Bioplastic Production from Microalgae: A Review. International Journal of Environmental Research and Public Health 2020:17(11). https://doi.org/10.3390/ijerph17113842
- Borowitzka M. A. Microalgae as sources of pharmaceuticals and other biologically active compounds. Journal of Applied Phycology 1995:7(1):3–15. https://doi.org/10.1007/BF00003544
- Kumar K., Dasgupta C. N., Nayak B., Lindblad P., Das D. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresource Technology 2011:102(8):4945–4953. https://doi.org/10.1016/j.biortech.2011.01.054
- Luo H.-P., Al-Dahhan M. H. Airlift column photobioreactors for Porphyridium sp. culturing: Part I. effects of hydrodynamics and reactor geometry. Biotechnology and Bioengineering 2012:109(4):932–941. https://doi.org/10.1002/bit.24361
- Abu-Ghosh S., Fixler D., Dubinsky Z., Iluz D. Flashing light in microalgae biotechnology. Bioresource Technology 2016:203:357–363. https://doi.org/10.1016/j.biortech.2015.12.057
- Chamizo S., Mugnai G., Rossi F., Certini G., De Philippis R. Cyanobacteria Inoculation Improves Soil Stability and Fertility on Different Textured Soils: Gaining Insights for Applicability in Soil Restoration. Front. Environ. Sci. 2018:6:49. https://doi.org/10.3389/fenvs.2018.00049
- Billi D., Verseux C., Fagliarone C., Napoli A., Baqué M., De Vera J.-P. A Desert Cyanobacterium under Simulated Mars-like Conditions in Low Earth Orbit: Implications for the Habitability of Mars. Astrobiology 2019:19(2):158–169. https://doi.org/10.1089/ast.2017.1807
- Napoli A., et al. Absence of increased genomic variants in the cyanobacterium Chroococcidiopsis exposed to Mars-like conditions outside the space station. Sci Rep 2022:12(1):8437. https://doi.org/10.1038/s41598-022-12631-5
- Billi D. Challenging the Survival Thresholds of a Desert Cyanobacterium under Laboratory Simulated and Space Conditions. In Extremophiles as Astrobiological Models, Seckbach J., Stan‐Lotter H., Eds., 1st ed. Wiley, 2020, pp. 183–195. https://doi.org/10.1002/9781119593096.ch8
- Helisch H., et al. High density long-term cultivation of Chlorella vulgaris SAG 211-12 in a novel microgravity-capable membrane raceway photobioreactor for future bioregenerative life support in SPACE. Life Sciences in Space Research 2020:24:91–107. https://doi.org/10.1016/j.lssr.2019.08.001
- Thomas D. J., Sullivan S. L., Price A. L., Zimmerman S. M. Common Freshwater Cyanobacteria Grow in 100 % CO2. Astrobiology 2005:5(1):66–74. https://doi.org/10.1089/ast.2005.5.66
- Fajardo C., Donato M., Carrasco R., Martínez‐Rodríguez G., Mancera J. M., Fernández‐Acero F. J. Advances and challenges in genetic engineering of microalgae. Rev Aquacult 2020:12(1):365–381. https://doi.org/10.1111/raq.12322
- Detrell G. Chlorella Vulgaris Photobioreactor for Oxygen and Food Production on a Moon Base – Potential and Challenges. Front. Astron. Space Sci. 2021:8:700579. https://doi.org/10.3389/fspas.2021.700579
- Grosshagauer S., Kraemer K., Somoza V. The True Value of Spirulina. J. Agric. Food Chem. 2020:68(14):4109–4115. https://doi.org/10.1021/acs.jafc.9b08251
- Ahmed B., Sultana S. A Critical Review on PLA-Algae Composite: Chemistry, Mechanical, and Thermal Properties. Journal of Textile Science & Engineering 2021:10(7). https://doi.org/10.37421/jtese.2020.10.425
- Mona S., et al. Green technology for sustainable biohydrogen production (waste to energy): A review. Science of the Total Environment 2020:728:138481. https://doi.org/10.1016/j.scitotenv.2020.138481
- Macário I. P. E., et al. Cyanobacteria as Candidates to Support Mars Colonization: Growth and Biofertilization Potential Using Mars Regolith as a Resource. Front. Microbiol. 2022:13:840098. https://doi.org/10.3389/fmicb.2022.840098
- Do Nascimento M., Battaglia M. E., Sanchez Rizza L., Ambrosio R., Arruebarrena Di Palma A., Curatti L. Prospects of using biomass of N2-fixing cyanobacteria as an organic fertilizer and soil conditioner. Algal Research 2019:43:101652. https://doi.org/10.1016/j.algal.2019.101652
- Fernandez B. G., Rothschild L. J., Fagliarone C., Chiavarini S., Billi D. Feasibility as feedstock of the cyanobacterium Chroococcidiopsis sp. 029 cultivated with urine-supplemented moon and mars regolith simulants. Algal Research 2023:71:103044. https://doi.org/10.1016/j.algal.2023.103044
- Cuellar-Bermudez S. P., et al. Nutrients utilization and contaminants removal. A review of two approaches of algae and cyanobacteria in wastewater. Algal Research 2017:24(B):438–449. https://doi.org/10.1016/j.algal.2016.08.018
- Fais G., et al. Wide Range Applications of Spirulina: From Earth to Space Missions. Marine Drugs 2022:20(5):299. https://doi.org/10.3390/md20050299
- Jaatinen S., Lakaniemi A.-M., Rintala J. Use of diluted urine for cultivation of Chlorella vulgaris. Environmental Technology 2016:37(9):1159–1170. https://doi.org/10.1080/09593330.2015.1105300
- Lafarga T., Fernández-Sevilla J. M., González-López C., Acién-Fernández F. G. Spirulina for the food and functional food industries. Food Research International 2020:137:109356. https://doi.org/10.1016/j.foodres.2020.109356
- Markou G., Chatzipavlidis I., Georgakakis D. Effects of phosphorus concentration and light intensity on the biomass composition of Arthrospira (Spirulina) platensis. World J Microbiol Biotechnol 2012:28(8):2661–2670. https://doi.org/10.1007/s11274-012-1076-4
- Markou G. Alteration of the biomass composition of Arthrospira (Spirulina) platensis under various amounts of limited phosphorus. Bioresource Technology 2012:116:533–535. https://doi.org/10.1016/j.biortech.2012.04.022
- Lai Y. H., Puspanadan S., Lee C. K. Nutritional optimization of Arthrospira platensis for starch and Total carbohydrates production. Biotechnol Progress 2019:35(3):e2798. https://doi.org/10.1002/btpr.2798
- Wiebe M. G. QuornTM Myco-protein – Overview of a successful fungal product. Mycologist 2004:18(1):17–20. https://doi.org/10.1017/S0269915X04001089
- What is Mycoprotein. Marlow Food Ltd. [Online]. [Accessed: 28.04.2023]. Available: https://web.archive.org/web/20140116203433/http://www.mycoprotein.org/assets/ALFT_V2_2.pdf#
- Vegetarian Mince. Marlow Food Ltd. [Online]. [Accessed: 28.04.2023]. Available: https://web.archive.org/web/20130903011201/http://www.quorn.co.uk/food/cook-from-scratch/vegetarian-mince/#
- Mapstone L. Nutritional profiles of Spirulina, Chlorella, Durum Wheat, Sweet Potato and the House Cricket. Mendeley Data, V2, 2021. https://doi.org/10.17632/3MH8M429PV.2
- Tuomisto H. L. Food Security and Protein Supply -Cultured meat a solution? in Delivering Food Security with Supply Chain Led Innovations: understanding supply chains, providing food security, delivering choice, London, 7–9 September. [Online]. [Accessed: 28.04.2023]. Available: https://staticmer.emol.cl/Documentos/Campo/2011/08/02/20110802122710.pdf
- Aikawa S., et al. Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes. Energy Environ. Sci. 2013:6(6):1844. https://doi.org/10.1039/c3ee40305j
- Weiss T. L., Young E. J., Ducat D. C. A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production. Metabolic Engineering 2017:44:236–245. https://doi.org/10.1016/j.ymben.2017.10.009
- Fedeson D. T., Saake P., Calero P., Nikel P. I., Ducat D. C. Biotransformation of 2,4-dinitrotoluene in a phototrophic co-culture of engineered Synechococcus elongatus and Pseudomonas putida. Microbial Biotechnology 2020:13(4):997–1011. https://doi.org/10.1111/1751-7915.13544
- Mollers K. B., Cannella D., Jorgensen H., Frigaard N.-U. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnol Biofuels 2014:7(1):64. https://doi.org/10.1186/1754-6834-7-64
- Niederholtmeyer H., Wolfstädter B. T., Savage D. F., Silver P. A., Way J. C. Engineering Cyanobacteria to Synthesize and Export Hydrophilic Products. Appl Environ Microbiol 2010:76(11):3462–3466. https://doi.org/10.1128/AEM.00202-10
- Afreen R., Tyagi S., Singh G. P., Singh M. Challenges and Perspectives of Polyhydroxyalkanoate Production from Microalgae/Cyanobacteria and Bacteria as Microbial Factories: An Assessment of Hybrid Biological System. Front. Bioeng. Biotechnol. 2021:9:624885. https://doi.org/10.3389/fbioe.2021.624885
- Lowe H., Hobmeier K., Moos M., Kremling A., Pfluger-Grau K. Photoautotrophic production of polyhydroxyalkanoates in a synthetic mixed culture of Synechococcus elongatus cscB and Pseudomonas putida cscAB. Biotechnol Biofuels 2017:10(1):190. https://doi.org/10.1186/s13068-017-0875-0
- Rosano G. L., Morales E. S., Ceccarelli E. A. New tools for recombinant protein production in Escherichia coli : A 5‐year update. Protein Science 2019:28(8):1412–1422. https://doi.org/10.1002/pro.3668
- Rahman A., Anthony R. J., Sathish A., Sims R. C., Miller C. D. Effects of wastewater microalgae harvesting methods on polyhydroxybutyrate production. Bioresource Technology 2014:156:364–367. https://doi.org/10.1016/j.biortech.2014.01.034
- Borowitzka M. A. Chapter3 - Biology of Microalgae. In Microalgae in Health and Disease Prevention. Elsevier, 2018:23–72. https://doi.org/10.1016/B978-0-12-811405-6.00003-7
- NASA. Strata at Base of Mount Sharp. 2015. [Online]. [Accessed: 05.11.2023]. Available: https://mars.nasa.gov/resources/7505/strata-at-base-of-mount-sharp/
- NASA. Northern Ice Cap of Mars. 2010. [Online]. [Accessed: 05.11.2023]. Available: https://mars.nasa.gov/resources/3241/northern-ice-cap-of-mars/
- NASA. Solar Fury. NASA’s Goddard Space Flight Center. 2017. [Online]. [Accessed: 05.11.2023]. Available: https://solarsystem.nasa.gov/resources/392/solar-fury/?category=solar-system_sun
- NASA. Viking 1 orbiter image shows the thin atmosphere of Mars. 1976. [Online]. [Accessed: 05.10.2023]. Available: http://solarsystem.nasa.gov/multimedia/gallery/Mars__atmosphere.jpg
- NASA. Space Food Laboratory Gallery. 2003. [Online]. [Accessed: 05.10.2023]. Available: https://www.nasa.gov/audience/formedia/presskits/spacefood/gallery_jsc2003e63872.html
- iStock and Grafner, ‘Red black 3D printer printing blue logo symbol on metal diamond plate future technology modern concept stock photo’, 2019. [Online]. [Accessed: 05.11.2023]. Available: https://www.istockphoto.com/photo/red-black-3d-printer-printing-blue-logo-symbol-on-metal-diamond-plate-future-gm1140075616-304946166
- MorgueFile. Various pills. 2007. [Online]. [Accessed: 05.10.2023]. Available: http://www.morguefile.com
- NASA. Roaring Perseverance Launch. 2020. [Online]. [Accessed: 05.11.2023]. Available: https://mars.nasa.gov/resources/25214/roaring-perseverance-launch/
- Lee E., Choi J., Ahn A., Oh E., Kweon H., Cho D. Acceptable macronutrient distribution ranges and hypertension. Clinical and Experimental Hypertension 2015:37(6):463–467. https://doi.org/10.3109/10641963.2015.1013116
- Energetics of Cellular Respiration (Glucose Metabolism). Biochemistry Notes. PharmaXChange.info. Oct. 10, 2013. [Online]. [Accessed: 28.04.2023]. Available: https://pharmaxchange.info/2013/10/energetics-of-cellular-respiration-glucose-metabolism/
- Rehkamp S. A Look at Calorie Sources in the American Diet. USDA Economic Research Service U.S. Department of Agriculture. Dec. 05, 2016. [Online]. [Accessed: 28.04.2023]. Available: https://www.ers.usda.gov/amber-waves/2016/december/a-look-at-calorie-sources-in-the-american-diet
- Eliasson A.-C., Ed. Starch in food: structure, function and applications. In Woodhead Publishing in food science and technology. Cambridge, England: Boca Raton, FL: Woodhead Pub.; CRC Press, 2004.
- Dismukes G. C., Carrieri D., Bennette N., Ananyev G. M., Posewitz M. C. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Current Opinion in Biotechnology 2008:19(3):235–240. https://doi.org/10.1016/j.copbio.2008.05.007
- Wang B., Wang J., Zhang W., Meldrum D. Application of synthetic biology in cyanobacteria and algae. Frontiers in Microbiology 2012:3. https://doi.org/10.3389/fmicb.2012.00344
- Hendrickx L., Mergeay M. From the deep sea to the stars: human life support through minimal communities. Current Opinion in Microbiology 2007:10(3):231–237. https://doi.org/10.1016/j.mib.2007.05.007
- Janssen P. J. D., et al. Photosynthesis at the forefront of a sustainable life. Frontiers in Chemistry 2014:2. https://doi.org/10.3389/fchem.2014.00036
- Lehto K. M., Lehto H. J., Kanervo E. A. Suitability of different photosynthetic organisms for an extraterrestrial biological life support system. Research in Microbiology 2006:157(1):69–76. https://doi.org/10.1016/j.resmic.2005.07.011
- Way J. C., Silver P. A., Howard R. J. Sun-driven microbial synthesis of chemicals in space. International Journal of Astrobiology 2011:10(4):359–364. https://doi.org/10.1017/S1473550411000218
- Kiss J. Z. Plant biology in reduced gravity on the Moon and Mars. Plant Biology 2014:16(1):12–17. https://doi.org/10.1111/plb.12031
- Villacampa A., et al. From Spaceflight to Mars g-Levels: Adaptive Response of A. Thaliana Seedlings in a Reduced Gravity Environment Is Enhanced by Red-Light Photostimulation. International Journal of Molecular Sciences 2021:22(2):899. https://doi.org/10.3390/ijms22020899
- Davila A. F., Willson D., Coates J. D., McKay C. P. Perchlorate on Mars: a chemical hazard and a resource for humans. International Journal of Astrobiology 2013:12(4):321–325. https://doi.org/10.1017/S1473550413000189
- Oze C., et al. Perchlorate and Agriculture on Mars. Soil Systems 2021:5(3):0037. https://doi.org/10.3390/soilsystems5030037
- Fackrell L. E., Schroeder P. A., Thompson A., Stockstill-Cahill K., Hibbitts C. A. Development of martian regolith and bedrock simulants: Potential and limitations of martian regolith as an in-situ resource. Icarus 2021:354:114055. https://doi.org/10.1016/j.icarus.2020.114055
- Bito T., Okumura E., Fujishima M., Watanabe F. Potential of Chlorella as a Dietary Supplement to Promote Human Health. Nutrients 2020:12(9):2524. https://doi.org/10.3390/nu12092524
- Gissibl A., Sun A., Care A., Nevalainen H., Sunna A. Bioproducts from Euglena gracilis: Synthesis and Applications. Front. Bioeng. Biotechnol. 2019:7:108. https://doi.org/10.3389/fbioe.2019.00108
- St. Jeor S. T., et al. Dietary Protein and Weight Reduction. Circulation 2001:104(15):1869–1874. https://doi.org/10.1161/hc4001.096152
- FDA Consumer, vol. 36. U.S. Department of Health, Education, and Welfare, Public Health Service, Food and Drug Administration, 2002.
- Starr C., Taggart R., Evers C., Starr L. Biology: The Unity and Diversity of Life. Cengage Learning, 2015.
- Bilsborough S., Mann N. A Review of Issues of Dietary Protein Intake in Humans. International Journal of Sport Nutrition and Exercise Metabolism 2006:16(2):129–152. https://doi.org/10.1123/ijsnem.16.2.129
- Margolis S. The Johns Hopkins medical guide to health after 50. New York: Black Dog & Leventhal, 2011.
- Hoeger W. W. K., Hoeger S. A. Fitness and wellness, 7th ed. Australia; Belmont, CA: Thomson/Wadsworth, 2007.
- Shilpa J., Mohan V. Ketogenic diets: Boon or bane? Indian J Med Res 2018:148(3):251–253.
- Masood W., Annamaraju P., Uppaluri K. R. Ketogenic Diet. In StatPearls, Treasure Island (FL): StatPearls Publishing, 2023. [Online]. [Accessed: 28.04.2023]. Available: http://www.ncbi.nlm.nih.gov/books/NBK499830/
- Longo R., et al. Ketogenic Diet: A New Light Shining on Old but Gold Biochemistry. Nutrients 2019:11(10):2497. https://doi.org/10.3390/nu11102497
- Tvrzicka E., Kremmyda L.-S., Stankova B., Zak A. Fatty acids as biocompounds: their role in human metabolism, health and disease – a review. Part 1: classification, dietary sources and biological functions. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2011:155(2):117–130. https://doi.org/10.5507/bp.2011.038
- Burlingame B., Nishida C., Uauy R., Weisell R. Fats and Fatty Acids in Human Nutrition: Introduction. Ann Nutr Metab 2009:55(1–3):5–7. https://doi.org/10.1159/000228993
- Murray A. J., et al. Novel ketone diet enhances physical and cognitive performance. FASEB Journal 2016:30(12):4021–4032. https://doi.org/10.1096/fj.201600773R
- Prince A., Zhang Y., Croniger C., Puchowicz M. Oxidative Metabolism: Glucose Versus Ketones. In Van Huffel S., Naulaers G., Caicedo A., Bruley D. F., Harrison D. K., Eds. Oxygen Transport to Tissue XXX. Advances in Experimental Medicine and Biology 2013:789:323–328. Springer, New York. https://doi.org/10.1007/978-1-4614-7411-1_43
- Karwi Q. G., Lopaschuk G. D. CrossTalk proposal: Ketone bodies are an important metabolic fuel for the heart. The Journal of Physiology 2022:600(5):1001–1004. https://doi.org/10.1113/JP281004
- Klepper J., Diefenbach S., Kohlschütter A., Voit T. Effects of the ketogenic diet in the glucose transporter 1 deficiency syndrome. Prostaglandins, Leukotrienes and Essential Fatty Acids 2004:70(3):321–327. https://doi.org/10.1016/j.plefa.2003.07.004
- Klepper J., et al. Introduction of a ketogenic diet in young infants. J Inherit Metab Dis 2002:25(6):449–460. https://doi.org/10.1023/A:1021238900470
- Chida R., Shimura M., Nishimata S., Kashiwagi Y., Kawashima H. Efficacy of ketogenic diet for pyruvate dehydrogenase complex deficiency. Pediatrics International 2018:60(11):1041–1042. https://doi.org/10.1111/ped.13700
- Wexler I. D., et al. Outcome of pyruvate dehydrogenase deficiency treated with ketogenic diets: Studies in patients with identical mutations. Neurology 1997:49(6):1655–1661. https://doi.org/10.1212/WNL.49.6.1655
- Martin-McGill K. J., Bresnahan R., Levy R. G., Cooper P. N. Ketogenic diets for drug‐resistant epilepsy. Cochrane Database of Systematic Reviews 2020:6. https://doi.org/10.1002/14651858.CD001903.pub5
- Roehl K., Falco-Walter J., Ouyang B., Balabanov A. Modified ketogenic diets in adults with refractory epilepsy: Efficacious improvements in seizure frequency, seizure severity, and quality of life. Epilepsy & Behavior 2019:93:113–118. https://doi.org/10.1016/j.yebeh.2018.12.010
- Campbell-McBride N. Gut and Psychology Syndrome: Natural Treatment for Autism, Dyspraxia, A.D.D., Dyslexia, A.D.H.D., Depression, Schizophrenia. Amersham: Halstan & Co. Ltd, 2010.
- Campbell-McBride N. Gut and Physiology Syndrome: Natural Treatment for Allergies, Autoimmune Illness, Arthritis, Gut Problems, Fatigue, Hormonal Problems, Neurological Disease and More. Chelsea Green Publishing, 2020.
- Sleiman S. F., et al. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. eLife 2016:5:e15092. https://doi.org/10.7554/eLife.15092
- Jensen N. J., Wodschow H. Z., Nilsson M., Rungby J. Effects of Ketone Bodies on Brain Metabolism and Function in Neurodegenerative Diseases. International Journal of Molecular Sciences 2020:21(22). https://doi.org/10.3390/ijms21228767
- Calder P. C. Functional Roles of Fatty Acids and Their Effects on Human Health. JPEN J Parenter Enteral Nutr 2015:39(1):18S–32S. https://doi.org/10.1177/0148607115595980
- De Cabo R., Mattson M. P. Effects of Intermittent Fasting on Health, Aging, and Disease. N Engl J Med 2019:381(26):2541–2551. https://doi.org/10.1056/NEJMra1905136
- Puchowicz M. A., et al. Neuroprotection in Diet-Induced Ketotic Rat Brain after Focal Ischemia. J Cereb Blood Flow Metab 2008:28(12):1907–1916. https://doi.org/10.1038/jcbfm.2008.79
- Willi S. M., Oexmann M. J., Wright N. M., Collop N. A., Key L. L. Jr. The Effects of a High-protein, Low-fat, Ketogenic Diet on Adolescents with Morbid Obesity: Body Composition, Blood Chemistries, and Sleep Abnormalities. Pediatrics 1998:101(1):61–67. https://doi.org/10.1542/peds.101.1.61
- Freeman J., Viggiotti P., Lanzi G., Tagliabue A., Perucca E. The Ketogenic diet: from molecular mechanisms to clinical effects. Epilepsy Research 2006:68(2):145–180. https://doi.org/10.1016/j.eplepsyres.2005.10.003
- Edwards L. M., et al. Short‐term consumption of a high‐fat diet impairs whole‐body efficiency and cognitive function in sedentary men. FASEB Journal 2011:25(3):1088–1096. https://doi.org/10.1096/fj.10-171983
- Holloway C. J., et al. A high-fat diet impairs cardiac high-energy phosphate metabolism and cognitive function in healthy human subjects. The American Journal of Clinical Nutrition 2011:93(4):748–755. https://doi.org/10.3945/ajcn.110.002758
- Helge J. W., Richter E. A., Kiens B. Interaction of training and diet on metabolism and endurance during exercise in man. The Journal of Physiology 1996:492(1):293–306. https://doi.org/10.1113/jphysiol.1996.sp021309
- Smith S. M., Zwart S. R., Heer M. Human Adaptation to Spaceflight: The Role of Nutrition. NASA, 2009. [Online]. [Accessed: 05.10.2023]. Available: https://www.nasa.gov/sites/default/files/human-adaptation-to-spaceflight-the-role-of-nutrition.pdf
- Phillips W. J. Starvation and Survival: Some Military Considerations. Military Medicine 1994:159(7):513–516. https://doi.org/10.1093/milmed/159.7.513
- Kaspar M. B., Austin K., Huecker M., Sarav M. Ketogenic Diet: from the Historical Records to Use in Elite Athletes. Curr Nutr Rep 2019:8(4):340–346. https://doi.org/10.1007/s13668-019-00294-0
- Phinney S. D. Ketogenic diets and physical performance. Nutr Metab 2004:1(1):2. https://doi.org/10.1186/1743-7075-1-2
- Musilova M., Foing B., Beniest A., Rogers H. EuroMoonMars IMA at hi-seas campaigns in 2019: an overview of the analog missions, upgrades to the mission operations and protocols. 2020 [Online]. [Accessed: 05.10.2023]. Available: https://www.hou.usra.edu/meetings/lpsc2020/pdf/2893.pdf
- University of South Florida. NASA mission tests ketogenic diet undersea, simulating life on Mars. 2017. [Online]. [Accessed: 05.10.2023]. Available: https://phys.org/news/2017-06-nasa-mission-ketogenic-diet-undersea.html
- Spalvins K., Blumberga D. Production of Fish Feed and Fish Oil from Waste Biomass Using Microorganisms: Overview of Methods Analyzing Resource Availability. Environmental and Climate Technologies 2018:22(1):149–164. https://doi.org/10.2478/rtuect-2018-0010
- de O. Finco A. M., Mamani L. D. G., de Carvalho J. C., de Melo Pereira G. V., Thomaz-Soccol V., Soccol C. R. Technological trends and market perspectives for production of microbial oils rich in omega-3. Critical Reviews in Biotechnology 2017:37(5):656–671. https://doi.org/10.1080/07388551.2016.1213221
- Innis S. M. Dietary omega 3 fatty acids and the developing brain. Brain Research 2008:1237:35–43. https://doi.org/10.1016/j.brainres.2008.08.078
- Sinclair A. J., Jayasooriya A. 16 – Nutritional Aspects of Single Cell Oils: Applications of Arachidonic Acid and Docosahexaenoic Acid Oils. In Single Cell Oils (Second Edition), Z. Cohen and C. Ratledge, Eds., AOCS Press, 2010:351–368. https://doi.org/10.1016/B978-1-893997-73-8.50020-7
- Collins C. T., et al. Pre- and post-term growth in pre-term infants supplemented with higher-dose DHA: a randomised controlled trial. British Journal of Nutrition 2011:105(11):1635–1643. https://doi.org/10.1017/S000711451000509X
- Petrie J. R., et al. Metabolic Engineering Camelina sativa with Fish Oil-Like Levels of DHA. PLOS ONE 2014:9(1):e85061. https://doi.org/10.1371/journal.pone.0085061
- Ratledge C. Microbial oils: an introductory overview of current status and future prospects. OCL 2013:20(6). https://doi.org/10.1051/ocl/2013029
- Garay L. A., Boundy-Mills K. L., German J. B. Accumulation of High-Value Lipids in Single-Cell Microorganisms: A Mechanistic Approach and Future Perspectives. J. Agric. Food Chem. 2014:62(13):2709–2727. https://doi.org/10.1021/jf4042134
- Huang C., Chen X., Xiong L., Chen X., Ma L., Chen Y. Single cell oil production from low-cost substrates: The possibility and potential of its industrialization. Biotechnology Advances 2013:31(2):129–139. https://doi.org/10.1016/j.biotechadv.2012.08.010
- Thevenieau F., Nicaud J.-M. Microorganisms as sources of oils. OCL 2013:20(6):D603. https://doi.org/10.1051/ocl/2013034
- Christophe G., et al. Recent developments in microbial oils production: a possible alternative to vegetable oils for biodiesel without competition with human food? Braz. arch. biol. technol. 2012:55(1):29–46. https://doi.org/10.1590/S1516-89132012000100004
- Liu J., Sun Z., Chen F. Heterotrophic Production of Algal Oils. In Biofuels from Algae, Elsevier, 2014:111–142. https://doi.org/10.1016/B978-0-444-59558-4.00006-1
- Račko E., Blumberga D., Spalviņš K., Marčiulaitienė E. Ranking of By-products for Single Cell Oil Production. Case of Latvia. Environmental and Climate Technologies 2020:24(2):258–271. https://doi.org/10.2478/rtuect-2020-0071
- Chang G., Gao N., Tian G., Wu Q., Chang M., Wang X. Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp. S31 with constantly high oxygen transfer coefficient. Bioresource Technology 2013:142:400–406. https://doi.org/10.1016/j.biortech.2013.04.107
- Ma W., et al. Efficient co-production of EPA and DHA by Schizochytrium sp. via regulation of the polyketide synthase pathway. Commun Biol 2022:5(1356). https://doi.org/10.1038/s42003-022-04334-4
- Kim H.-Y., Huang B. X., Spector A. A. Phosphatidylserine in the brain: Metabolism and function. Progress in Lipid Research 2014:56:1–18. https://doi.org/10.1016/j.plipres.2014.06.002
- Singh M. Essential fatty acids, DHA and human brain. Indian J Pediatr 2005:72(3):239–242. https://doi.org/10.1007/BF02859265
- Derbyshire E. Brain Health across the Lifespan: A Systematic Review on the Role of Omega-3 Fatty Acid Supplements. Nutrients 2018:10(8):1094. https://doi.org/10.3390/nu10081094
- Reimers A., Ljung H. The emerging role of omega-3 fatty acids as a therapeutic option in neuropsychiatric disorders. Therapeutic Advances in Psychopharmacology 2019:9. https://doi.org/10.1177/2045125319858901
- Gutiérrez S., Svahn S. L., Johansson M. E. Effects of Omega-3 Fatty Acids on Immune Cells. International Journal of Molecular Sciences 2019:20(20):5028. https://doi.org/10.3390/ijms20205028
- Pizzini A., Lunger L., Sonnweber T., Weiss G., Tancevski I. The Role of Omega-3 Fatty Acids in the Setting of Coronary Artery Disease and COPD: A Review. Nutrients 2018:10(12):1864. https://doi.org/10.3390/nu10121864.
- Watanabe Y., Tatsuno I. Omega-3 polyunsaturated fatty acids for cardiovascular diseases: present, past and future. Expert Review of Clinical Pharmacology 2017:10(8):865–873. https://doi.org/10.1080/17512433.2017.1333902
- Roohani A. M., et al. Effect of spirulina Spirulina platensis as a complementary ingredient to reduce dietary fish meal on the growth performance, whole-body composition, fatty acid and amino acid profiles, and pigmentation of Caspian brown trout (Salmo trutta caspius) juveniles. Aquaculture Nutrition 2019:25(3):633–645. https://doi.org/10.1111/anu.12885
- Bertoldi F. C., Sant’Anna E., da C. Braga M. V., Oliveira J. L. B. Lipids, fatty acids composition and carotenoids of Chlorella vulgaris cultivated in hydroponic wastewater. Grasas y Aceites 2006:57(3). https://doi.org/10.3989/gya.2006.v57.i3.48
- Tokuşoglu Ö., üUnal M. K. Biomass Nutrient Profiles of Three Microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. Journal of Food Science 2003:68(4):1144–1148. https://doi.org/10.1111/j.1365-2621.2003.tb09615.x
- Diraman H., Koru E., Dibeklioglu H. Fatty Acid Profile of Spirulina platensis Used as a Food Supplement. Israeli Journal of Aquaculture – Bamidgeh 2009:61. https://doi.org/10.46989/001c.20548
- Bailey R. B., et al. Enhanced production of lipids containing polyenoic fatty acid by very high density cultures of eukaryotic microbes in fermentors. [Online]. [Accessed: 28.04.2023]. Available: https://patents.google.com/patent/US6607900B2/en
- Liang Y., Sarkany N., Cui Y., Yesuf J., Trushenski J., Blackburn J. W. Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Bioresource Technology 2010:101(10):3623–3627. https://doi.org/10.1016/j.biortech.2009.12.087
- Soni R. A., Sudhakar K., Rana R. S. Spirulina – From growth to nutritional product: A review. Trends in Food Science & Technology 2017:69:157–171. https://doi.org/10.1016/j.tifs.2017.09.010
- Spalvins K., Blumberga D. Single cell oil production from waste biomass: review of applicable agricultural by-products. Environmental and Climate Technologies 2019:23(2):325–337. https://doi.org/10.2478/rtuect-2019-0071
- Spalvins K., Vamza I., Blumberga D. Single Cell Oil Production from Waste Biomass: Review of Applicable Industrial By-Products. Environmental and Climate Technologies 2019:23(2):325–337. https://doi.org/10.2478/rtuect-2019-0071
- Li J., et al. A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources. Bioresour Technol 2015:177:51–57. https://doi.org/10.1016/j.biortech.2014.11.046
- Patil K. P., Gogate P. R. Improved synthesis of docosahexaenoic acid (DHA) using Schizochytrium limacinum SR21 and sustainable media. Chemical Engineering Journal 2015:268:187–196. https://doi.org/10.1016/j.cej.2015.01.050
- Food and Agriculture Organization of the United Nations. Projet Pilote de d´eveloppement de la fili‘ere Dih´e au Tchad. 2007.
- Sun L., Ren L., Zhuang X., Ji X., Yan J., Huang H. Differential effects of nutrient limitations on biochemical constituents and docosahexaenoic acid production of Schizochytrium sp. Bioresource Technology 2014:159:199–206. https://doi.org/10.1016/j.biortech.2014.02.106
- Bonilla J. R., Concha J. L. H. Methods of extraction, refining and concentration of fish oil as a source of Omega-3 fatty acids. Agricultural Science and Technology 2018:19(3):621–644. https://doi.org/10.21930/rcta.vol19_num2_art:684
- Hart B., Schurr R., Narendranath N., Kuehnle A., Colombo S. M. Digestibility of Schizochytrium sp. whole cell biomass by Atlantic salmon (Salmo salar). Aquaculture 2021:533:736156. https://doi.org/10.1016/j.aquaculture.2020.736156
- Greenwalt C. J. Utilization of crop residue and production of edible single cell oil for an advanced life support system – ProQuest. 2000. [Online]. [Accessed: 28.04.2023]. Available: https://www.proquest.com/openview/b353c1d289a46d32ff761317db9b9bc6/1?cbl=18750&diss=y&pq-origsite=gscholar&parentSessionId=tU1Nw%2FUgeOuGU3Z%2BbNAdwDkNYwMUrQCoAf0RdIfeMEY%3D
- Zhang J., et al. Microbial lipid production by the oleaginous yeast Cryptococcus curvatus O3 grown in fed-batch culture. Biomass and Bioenergy 2011:35(5):1906–1911. https://doi.org/10.1016/j.biombioe.2011.01.024
- Hao S., et al. The effects of different extraction methods on composition and storage stability of sturgeon oil. Food Chemistry 2015:173:274–282. https://doi.org/10.1016/j.foodchem.2014.09.154
- Haq M., Ahmed R., Cho Y.-J., Chun B.-S. Quality Properties and Bio-potentiality of Edible Oils from Atlantic Salmon By-products Extracted by Supercritial Carbon Dioxide and Conventional Methods. Waste Biomass Valor 2017:8(6):1953–1967. https://doi.org/10.1007/s12649-016-9710-2
- Lopes B. L. F., Sánchez-Camargo A. P., Ferreira A. L. K., Grimaldi R., Paviani L. C., Cabral F. A. Selectivity of supercritical carbon dioxide in the fractionation of fish oil with a lower content of EPA+DHA. The Journal of Supercritical Fluids 2012:61:78–85. https://doi.org/10.1016/j.supflu.2011.09.015
- Ferdosh S., Sarker Md. Z. I., Norulaini Nik Ab Rahman N., Haque Akanda Md. J., Ghafoor K., Kadir Mohd. O. A. Simultaneous Extraction and Fractionation of Fish Oil from Tuna By-Product Using Supercritical Carbon Dioxide (SC-CO2). Journal of Aquatic Food Product Technology 2016:25(2):230–239. https://doi.org/10.1080/10498850.2013.843629
- Perretti G., Motori A., Bravi E., Favati F., Montanari L., Fantozzi P. Supercritical carbon dioxide fractionation of fish oil fatty acid ethyl esters. The Journal of Supercritical Fluids 2007:40(3):349–353. https://doi.org/10.1016/j.supflu.2006.07.020
- Létisse M., Comeau L. Enrichment of eicosapentaenoic acid and docosahexaenoic acid from sardine by-products by supercritical fluid fractionation. Journal of Separation Science 2008:31(8):1374–1380. https://doi.org/10.1002/jssc.200700501
- Carneiro M. L. N. M., et al. Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA). Renewable and Sustainable Energy Reviews 2017:73:632–653. https://doi.org/10.1016/j.rser.2017.01.152
- Lam M. K., Lee K. T. Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology Advances 2012:30(3):673–690. https://doi.org/10.1016/j.biotechadv.2011.11.008
- McKinlay J. B., Harwood C. S. Photobiological production of hydrogen gas as a biofuel. Current Opinion in Biotechnology 2010:21(3):244–251. https://doi.org/10.1016/j.copbio.2010.02.012
- Bauen A., Howes J., Bertuccioli L., Chudziak C. Review of the potential for biofuels in aviation. E4tech, Final report, Aug. 2009. [Online]. [Accessed: 28:04:2023]. Available: https://citeseerx.ist.psu.edu/doc/10.1.1.170.8750
- Holmgren J. Creating Alternative Fuel Options for the Aviation Industry: Role of Biofuels. Presented at the Holmgren 2009. Jennifer Holmgren, Creating Alternative Fuel for the Aviation Industry, UOP, ICAO Workshop on Aviation and Alternative Fuels, Montreal, Canada, Nov. 02, 2009.
- Fukuda H., Kondo A., Noda H. Biodiesel fuel production by transesterification of oils. Journal of Bioscience and Bioengineering 2001:92(5):405–416. https://doi.org/10.1016/S1389-1723(01)80288-7
- Brown R., Holmgren J. Fast Pyrolysis and Bio-Oil Upgrading. [Online]. [Accessed: 28.04.2023]. Available: https://www.driveonwood.com/static/media/uploads/pdf/fast_pyrolysis.pdf
- Alternative Fuels Data Center: Renewable Gasoline. US Department of Energy. Energy Effciency & Renewable Energy. [Online]. [Accessed: 28.04.2023]. Available: https://afdc.energy.gov/fuels/emerging_hydrocarbon.html
- Alternative Fuels Data Center: Biodiesel Production and Distribution. US Department of Energy. Energy Efficiency & Renewable Energy. [Online]. [Accessed: 28.04.2023]. Available: https://afdc.energy.gov/fuels/biodiesel_production.html
- Evans D. G. National Non-Food Crops Centre – NNFCC 08-017 International Biofuels Strategy Project. Liquid Transport Biofuels – Technology Status Report. Jun. 11, 2008. [Online]. [Accessed: 28.04.2023]. Available: https://web.archive.org/web/20080611062858/http:/www.nnfcc.co.uk/metadot/index.pl?id=6597%3Bisa%3DDBRow%3Bop%3Dshow%3Bdbview_id%3D2457
- Liu J., Sun L., Xu W., Wang Q., Yu S., Sun J. Current advances and future perspectives of 3D printing natural-derived biopolymers. Carbohydrate Polymers 2019:207:297–316. https://doi.org/10.1016/j.carbpol.2018.11.077
- Chia W. Y., Ying Tang D. Y., Khoo K. S., Kay Lup A. N., Chew K. W. Nature’s fight against plastic pollution: Algae for plastic biodegradation and bioplastics production. Environmental Science and Ecotechnology 2020:4:100065. https://doi.org/10.1016/j.ese.2020.100065
- Keshavarz T., Roy I. Polyhydroxyalkanoates: bioplastics with a green agenda. Current Opinion in Microbiology 2010:3:321–326. https://doi.org/10.1016/j.mib.2010.02.006
- Chinthapalli R., et al. Biobased Building Blocks and Polymers – Global Capacities, Production and Trends, 2018–2023. Industrial Biotechnology 2019:15(4):237–241. https://doi.org/10.1089/ind.2019.29179.rch
- Meier M. A. R., Metzger J. O., Schubert U. S. Plant oil renewable resources as green alternatives in polymer science. Chem. Soc. Rev. 2007:36(11):1788–1802. https://doi.org/10.1039/b703294c
- Feofilovs M., Spalvins K., Valters K. Bibliometric Review of State-of-the-art Research on Microbial Oils’ Use for Biobased Epoxy. Environmental and Climate Technologies 2023:27(1):150–163. https://doi.org/10.2478/rtuect-2023-0012
- Stemmelen M., Pessel F., Lapinte V., Caillol S., Habas J.-P., Robin J.-J. A fully biobased epoxy resin from vegetable oils: From the synthesis of the precursors by thiol-ene reaction to the study of the final material. Journal of Polymer Science Part A: Polymer Chemistry 2011:49(11):2434–2444. https://doi.org/10.1002/pola.24674
- Dogan E., Kusefoglu S. Synthesis and in situ foaming of biodegradable malonic acid ESO polymers. Journal of Applied Polymer Science 2008:110(2):1129–1135. ttps://doi.org/10.1002/app.28708
- La Scala J., Wool R. P. Fundamental thermo-mechanical property modeling of triglyceride-based thermosetting resins. Journal of Applied Polymer Science 2013:127(3):1812–1826. https://doi.org/10.1002/app.37927
- Negrell C., Cornille A., de Andrade Nascimento P., Robin J.-J., Caillol S. New bio-based epoxy materials and foams from microalgal oil. European Journal of Lipid Science and Technology 2017:119(4):1600214. https://doi.org/10.1002/ejlt.201600214
- Taoka Y., Nagano N., Okita Y., Izumida H., Sugimoto S., Hayashi M. Influences of Culture Temperature on the Growth, Lipid Content and Fatty Acid Composition of Aurantiochytrium sp. Strain mh0186. Mar Biotechnol 2009:11(3):368–374. https://doi.org/10.1007/s10126-008-9151-4
- Roesle P., et al. Synthetic Polyester from Algae Oil. Angewandte Chemie International Edition 2009:53(26):6800–6804. https://doi.org/10.1002/anie.201403991
- Petrovic Z. S., et al. Polyols and Polyurethanes from Crude Algal Oil. Journal of the American Oil Chemists’ Society 2013:90(7):1073–1078. https://doi.org/10.1007/s11746-013-2245-9
- Pawar M. S., Kadam A. S., Dawane B. S., Yemul O. S. Synthesis and characterization of rigid polyurethane foams from algae oil using biobased chain extenders. Polym. Bull. 2016:73(3):727–741. https://doi.org/10.1007/s00289-015-1514-1
- Arbenz A., Perrin R., Averous L. Elaboration and Properties of Innovative Biobased PUIR Foams from Microalgae. J Polym Environ 2018:26(1):254–262. https://doi.org/10.1007/s10924-017-0948-y
- Hidalgo P., Navia R., Hunter R., Gonzalez M. E., Echeverría A. Development of novel bio-based epoxides from microalgae Nannochloropsis gaditana lipids. Composites Part B: Engineering 2019:166:653–662. https://doi.org/10.1016/j.compositesb.2019.02.049
- Bhatia A., Sehgal A. K. Additive manufacturing materials, methods and applications: A review. Materialstoday: Proceedings, International Virtual Conference on Sustainable Materials (IVCSM-2k20) 2023:81(2):1060–1067. https://doi.org/10.1016/j.matpr.2021.04.379
- Malburet S., Di Mauro C., Noè C., Mija A., Sangermano M., Graillot A. Sustainable access to fully biobased epoxidized vegetable oil thermoset materials prepared by thermal or UV-cationic processes. RSC Adv. 2020:10(68):41954–41966. https://doi.org/10.1039/D0RA07682A
- Chen Q., Mangadlao J. D., Wallat J., De Leon A., Pokorski J. K., Advincula R. C. 3D Printing Biocompatible Polyurethane/Poly(lactic acid)/Graphene Oxide Nanocomposites: Anisotropic Properties. ACS Appl. Mater. Interfaces 2017:9(4):4015–4023. https://doi.org/10.1021/acsami.6b11793
- Nurchi C., Buonvino S., Arciero I., Melino S. Sustainable Vegetable Oil-Based Biomaterials: Synthesis and Biomedical Applications. Int. J. Mol. Sci. 2023:24(3):2153. https://doi.org/10.3390/ijms24032153
- Voet V. S. D., Guit J., Loos K. Sustainable Photopolymers in 3D Printing: A Review on Biobased, Biodegradable, and Recyclable Alternatives. Macromol. Rapid Commun. 2021:42(3):2000475. https://doi.org/10.1002/marc.202000475
- Cui Y., Yang J., Lei D., Su J. 3D Printing of a Dual-Curing Resin with Cationic Curable Vegetable Oil. Ind. Eng. Chem. Res. 2020:59(25):11381–11388. https://doi.org/10.1021/acs.iecr.0c01507