McNulty M. J., et al. Molecular pharming to support human life on the moon, mars, and beyond. Critical Reviews in Biotechnology 2021:41(6):849–864. https://doi.org/10.1080/07388551.2021.1888070">https://doi.org/10.1080/07388551.2021.1888070
Fabris M., et al. Emerging Technologies in Algal Biotechnology: Toward the Establishment of a Sustainable, Algae-Based Bioeconomy. Frontiers in Plant Science 2020:11. https://doi.org/10.3389/fpls.2020.00279">https://doi.org/10.3389/fpls.2020.00279
Clément G. Fundamentals of Space Medicine. Springer Science & Business Media, 2011. https://doi.org/10.1007/978-1-4419-9905-4">https://doi.org/10.1007/978-1-4419-9905-4
Zubrin R. Why We Earthlings Should Colonize Mars! Theology and Science 2019:17(3):305–316. https://doi.org/10.1080/14746700.2019.1632519">https://doi.org/10.1080/14746700.2019.1632519
Geology of the InSight landing site on Mars | Nature Communications. [Online]. [Accessed: 31.03.2023]. Available: https://www.nature.com/articles/s41467-020-14679-1
Taylor G. J. The bulk composition of Mars. Geochemistry 2013:73(4):401–420. https://doi.org/10.1016/j.chemer.2013.09.006">https://doi.org/10.1016/j.chemer.2013.09.006
Zubrin R. The Economic Viability of Mars Colonization. In Deep Space Commodities, T. James, Ed., Cham: Springer International Publishing, 2018:159–180. https://doi.org/10.1007/978-3-319-90303-3_12">https://doi.org/10.1007/978-3-319-90303-3_12
Zubrin R. The Case for Colonizing Mars. Ad Astra: The Magazine of the National Space Society 1996. [Online]. [Accessed: 31.03.2023]. Available: https://home.ifa.hawaii.edu/users/meech/a281/handouts/mars_case.pdf
Stoker C. R., McKay C. P., Haberle R. M., Andersen D. T. Science strategy for human exploration of Mars. Advances in Space Research 1992:12(4):79–90. https://doi.org/10.1016/0273-1177(92)90159-U">https://doi.org/10.1016/0273-1177(92)90159-U
Uphoff C., Roberts P. h., Friedman L. d. Orbit Design Concepts for Jupiter Orbiter Missions. Journal of Spacecraft and Rockets 1976:13(6):348–355. https://doi.org/10.2514/3.57096">https://doi.org/10.2514/3.57096
Petrescu R. V., Aversa R., Apicella A., Petrescu F. I. NASA Selects Concepts for a New Mission to Titan, the Moon of Saturn. Journal of Aircraft and Spacecraft Technology 2018:2(1). https://doi.org/10.3844/jastsp.2018.40.52">https://doi.org/10.3844/jastsp.2018.40.52
Phillips C. B., Pappalardo R. T. Europa Clipper Mission Concept: Exploring Jupiter’s Ocean Moon. Eos, Transactions American Geophysical Union 2014:95(20):165–167. https://doi.org/10.1002/2014EO200002">https://doi.org/10.1002/2014EO200002
González-Galindo F., Forget F., López-Valverde M. A., Angelats i Coll M., Millour E. A ground‐to‐exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures. Journal of Geophysical Research: Planets 2009:114(E4). https://doi.org/10.1029/2008JE003246">https://doi.org/10.1029/2008JE003246
Gierasch P. J., Toon O. B. Atmospheric Pressure Variation and the Climate of Mars. Journal of the Atmospheric Sciences 1973:30(8):1502–1508. https://doi.org/10.1175/1520-0469(1973)030<;1502:APVATC>2.0.CO;2">https://doi.org/10.1175/1520-0469(1973)030<1502:APVATC>2.0.CO;2
Nazari-Sharabian M., Aghababaei M., Karakouzian M., Karami M. Water on Mars—A Literature Review. Galaxies 2020:8(2):40. https://doi.org/10.3390/galaxies8020040">https://doi.org/10.3390/galaxies8020040
Levchenko I., Xu S., Mazouffre S., Keidar M., Bazaka K. Mars Colonization: Beyond Getting There. In Terraforming Mars, John Wiley & Sons, Ltd, 2021:73–98. https://doi.org/10.1002/9781119761990.ch5">https://doi.org/10.1002/9781119761990.ch5
mars.nasa.gov. Missions. Mars Exploration Section. NASA Mars Exploration. [Online]. [Accessed: 27.04.2023]. Available: https://mars.nasa.gov/mars-exploration/missions?page=0&per_page=99&order=date+desc&search
mars.nasa.gov. Science and Exploration. ExoMars mission. The European Space Agency. [Online]. [Accessed: 27.04.2023]. Available: https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Exploration/ExoMars_mission
Trainer M. G., et al. Seasonal Variations in Atmospheric Composition as Measured in Gale Crater, Mars. Journal of Geophysical Research: Planets 2019:124(11):3000–3024. https://doi.org/10.1029/2019JE006175">https://doi.org/10.1029/2019JE006175
Drysdale A. E., Ewert M. K., Hanford A. J. Life support approaches for Mars missions. Advances in Space Research 2003:31(1):51–61. https://doi.org/10.1016/S0273-1177(02)00658-0">https://doi.org/10.1016/S0273-1177(02)00658-0
Jones H. W., Hodgson E. W., Kliss M. H. Life Support for Deep Space and Mars. In International Conference on Environmental Systems. Tucson, Arizona, Jul. 2014. [Online]. [Accessed: 27.04.2023]. Available: https://ttu-ir.tdl.org/bitstream/handle/2346/59729/ICES-2014-74.pdf?sequence=1&isAllowed=y
Appelbaum J., Flood D. J. Solar radiation on Mars. Solar Energy 1990:45(6):353–363. https://doi.org/10.1016/0038-092X(90)90156-7">https://doi.org/10.1016/0038-092X(90)90156-7
Lucchitta B. K. Mars and Earth: Comparison of cold-climate features. Icarus 1981:45(2):264–303. https://doi.org/10.1016/0019-1035(81)90035-X">https://doi.org/10.1016/0019-1035(81)90035-X
Fogg M. J. Terraforming Mars: A review of current research. Advances in Space Research 1998:22(3):415–420. https://doi.org/10.1016/S0273-1177(98)00166-5">https://doi.org/10.1016/S0273-1177(98)00166-5
Szocik K. Should and could humans go to Mars? Yes, but not now and not in the near future. Futures 2019:105:54–66. https://doi.org/10.1016/j.futures.2018.08.004">https://doi.org/10.1016/j.futures.2018.08.004
Berliner A. J., et al. Towards a Biomanufactory on Mars. Frontiers in Astronomy and Space Sciences 2021:8. [Online]. [Accessed: 27.04.2023]. Available: https://www.frontiersin.org/articles/10.3389/fspas.2021.711550
Towards synthetic biological approaches to resource utilization on space missions. [Online]. [Accessed: 25.01.2023]. Available: https://royalsocietypublishing.org/doi/epdf/10.1098/rsif.2014.0715
Menezes A. A., Montague M. G., Cumbers J., Hogan J. A., Arkin A. P. Grand challenges in space synthetic biology. Journal of The Royal Society Interface 2015:12(113):20150803. https://doi.org/10.1098/rsif.2015.0803">https://doi.org/10.1098/rsif.2015.0803
What Would Battery Manufacturing Look Like on the Moon and Mars? ACS Energy Letters. [Online]. [Accessed: 31.03.2023]. Available: https://pubs.acs.org/doi/10.1021/acsenergylett.2c02743
Douglas G. L., Zwart S. R., Smith S. M. Space Food for Thought: Challenges and Considerations for Food and Nutrition on Exploration Missions. The Journal of Nutrition 2020:150(9):2242–2244. https://doi.org/10.1093/jn/nxaa188">https://doi.org/10.1093/jn/nxaa188
Mitchell C. Bioregenerative life-support systems. The American Journal of Clinical Nutrition 1994:60(5):820S–824S. https://doi.org/10.1093/ajcn/60.5.820S">https://doi.org/10.1093/ajcn/60.5.820S
Wamelink G. W. W., Frissel J. Y., Krijnen W. H. J., Verwoert M. R., Goedhart P. W. Can Plants Grow on Mars and the Moon: A Growth Experiment on Mars and Moon Soil Simulants. PLOS ONE 2014:9(8):e103138. https://doi.org/10.1371/journal.pone.0103138">https://doi.org/10.1371/journal.pone.0103138
Tang H., Rising H. H., Majji M., Brown R. D. Long-Term Space Nutrition: A Scoping Review. Nutrients 2022:14(1). https://doi.org/10.3390/nu14010194">https://doi.org/10.3390/nu14010194
Cannon K. M., Britt, D. T. Feeding One Million People on Mars. New Space 2019:7(4):245–254. https://doi.org/10.1089/space.2019.0018">https://doi.org/10.1089/space.2019.0018
MacElroy R. D., Bredt J. Current concepts and future directions of CELSS. Advances in Space Research 1984:4(12):221–229. https://doi.org/10.1016/0273-1177(84)90566-0">https://doi.org/10.1016/0273-1177(84)90566-0
Sadler P., et al. Bio-regenerative Life Support Systems for Space Surface Applications. In 41st International Conference on Environmental Systems. Portland, Oregon: American Institute of Aeronautics and Astronautics, Jul. 2011. https://doi.org/10.2514/6.2011-5133">https://doi.org/10.2514/6.2011-5133
Sanders G. B., et al., Results from the NASA Capability Roadmap Team for In-Situ Resource Utilization (ISRU). Presented at the International Lunar Conference 2005, Toronto, Sep. 2005. [Online]. [Accessed: 31.03.2023]. Available: https://ntrs.nasa.gov/citations/20110024178
Berla B. M., Saha R., Immethun C. M., Maranas C. D., Moon T. S., Pakrasi H. B. Synthetic biology of cyanobacteria: unique challenges and opportunities. Front. Microbiol. 2013:4. https://doi.org/10.3389/fmicb.2013.00246">https://doi.org/10.3389/fmicb.2013.00246
Mars Solar Power. 2nd International Energy Conversion Engineering Conference (IECEC). Providence, Rhode Islands, 2004. [Online]. [Accessed: 31.03.2023]. Available: https://arc.aiaa.org/doi/abs/10.2514/6.2004-5555
Brennan L., Owende P. Biofuels from microalgae – A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews 2010:14(2):557–577. https://doi.org/10.1016/j.rser.2009.10.009">https://doi.org/10.1016/j.rser.2009.10.009
Kruyer N. S., Realff M. J., Sun W., Genzale C. L., Peralta-Yahya P. Designing the bioproduction of Martian rocket propellant via a biotechnology-enabled in situ resource utilization strategy. Nature Communications 2021:12:6166. https://doi.org/10.1038/s41467-021-26393-7">https://doi.org/10.1038/s41467-021-26393-7
Fahrion J., Mastroleo F., Dussap C.-G., Leys N. Use of Photobioreactors in Regenerative Life Support Systems for Human Space Exploration. Frontiers in Microbiology 2021:12. https://doi.org/10.3389/fmicb.2021.699525">https://doi.org/10.3389/fmicb.2021.699525
Donald Rapp, Ed., Use of extraterrestrial resources for human space missions to moon or mars. Second. New York, NY: Springer Berlin Heidelberg, 2018. https://doi.org/10.1007/978-3-319-72694-6">https://doi.org/10.1007/978-3-319-72694-6
Mapstone L. J., Leite M. N., Purton S., Crawford I. A., Dartnell L. Cyanobacteria and microalgae in supporting human habitation on Mars. Biotechnology Advances 2022:59:107946. https://doi.org/10.1016/j.biotechadv.2022.107946">https://doi.org/10.1016/j.biotechadv.2022.107946
Murukesan G., et al. Pressurized Martian-Like Pure CO2 Atmosphere Supports Strong Growth of Cyanobacteria, and Causes Significant Changes in their Metabolism. Origins of Life and Evolution of Biospheres 2016:46(1):119–131. https://doi.org/10.1007/s11084-015-9458-x">https://doi.org/10.1007/s11084-015-9458-x
Keller R., Goli K., Porter W., Alrabaa A., Jones J. A. Cyanobacteria and Algal-Based Biological Life Support System (BLSS) and Planetary Surface Atmospheric Revitalizing Bioreactor Brief Concept Review. Life 2023:13(3):816. https://doi.org/10.3390/life13030816">https://doi.org/10.3390/life13030816
Uyeda C., Thangavelu M. Creating Human Experience through Food in Space (C.H.E.F.). In AIAA SCITECH 2023 Forum, American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2023-0264">https://doi.org/10.2514/6.2023-0264
Menezes A. A., Cumbers J., Hogan J. A., Arkin A. P. Towards synthetic biological approaches to resource utilization on space missions. J. R. Soc. Interface 2015:12(102):20140715. https://doi.org/10.1098/rsif.2014.0715">https://doi.org/10.1098/rsif.2014.0715
Averesch N. J. H. Choice of Microbial System for In-Situ Resource Utilization on Mars. Front. Astron. Space Sci. 2021:8:700370. https://doi.org/10.3389/fspas.2021.700370">https://doi.org/10.3389/fspas.2021.700370
Watkins P., Hughes J., Gamage T. V., Knoerzer K., Ferlazzo M. L., Banati R. B. Long term food stability for extended space missions: a review. Life Sciences in Space Research 2022:32:79–95. https://doi.org/10.1016/j.lssr.2021.12.003">https://doi.org/10.1016/j.lssr.2021.12.003
Zabel P., Bamsey M., Schubert D., Tajmar M. Review and analysis of over 40 years of space plant growth systems. Life Sciences in Space Research 2016:10:1–16. https://doi.org/10.1016/j.lssr.2016.06.004">https://doi.org/10.1016/j.lssr.2016.06.004
Asao T. Hydroponics: A Standard Methodology for Plant Biological Researches. BoD – Books on Demand, 2012. https://doi.org/10.5772/2215">https://doi.org/10.5772/2215
Ferl R. J., Schuerger A. C., Paul A.-L., Gurley W. B., Corey K., Bucklin R. Plant adaptation to low atmospheric pressures: potential molecular responses. Life Support & Biosphere Science 2002:8(2):93–101.
Exploration Systems Requirements to Establish a Sustainable Human Presence on Mars. AIAA SPACE Forum. [Online]. [Accessed: 31.03.2023]. Available: https://arc.aiaa.org/doi/10.2514/6.2017-5367
Gurlek C., Yarkent C., Oral I., Kose A., Oncel S. S. Nutraceutical Aspects of Microalgae: Will Our Future Space Foods Be Microalgae Based? In Handbook of Algal Technologies and Phytochemicals, CRC Press, 2019. https://doi.org/10.1201/9780429054242-18">https://doi.org/10.1201/9780429054242-18
Kuhad R. C., Singh A., Tripathi K. K., Saxena R. K., Eriksson K.-E. L. Microorganisms as an Alternative Source of Protein. Nutrition Reviews 1997:55(3):65–75. https://doi.org/10.1111/j.1753-4887.1997.tb01599.x">https://doi.org/10.1111/j.1753-4887.1997.tb01599.x
Moreira J. B. et al. Microalgae Polysaccharides: An Alternative Source for Food Production and Sustainable Agriculture. Polysaccharides 2022:3(2). https://doi.org/10.3390/polysaccharides3020027">https://doi.org/10.3390/polysaccharides3020027
Vazhappilly R., Chen F. Heterotrophic Production Potential of Omega-3 Polyunsaturated Fatty Acids by Microalgae and Algae-like Microorganisms. Botanica Marina 1998:41:1–6:553–558. https://doi.org/10.1515/botm.1998.41.1-6.553">https://doi.org/10.1515/botm.1998.41.1-6.553
Vaz B. da S., Moreira J. B., de Morais M. G., Costa J. A. V. Microalgae as a new source of bioactive compounds in food supplements. Current Opinion in Food Science 2016:7:73–77. https://doi.org/10.1016/j.cofs.2015.12.006">https://doi.org/10.1016/j.cofs.2015.12.006
Clauwaert P., et al. Nitrogen cycling in Bioregenerative Life Support Systems: Challenges for waste refinery and food production processes. Progress in Aerospace Sciences 2017:91:87–98. https://doi.org/10.1016/j.paerosci.2017.04.002">https://doi.org/10.1016/j.paerosci.2017.04.002
Montague M., et al. The Role of Synthetic Biology for In Situ Resource Utilization (ISRU). Astrobiology 2012:12(12):1135–1142. https://doi.org/10.1089/ast.2012.0829">https://doi.org/10.1089/ast.2012.0829
Verseux C., Baqué M., Lehto K., de Vera J.-P. P., Rothschild L. J., Billi D. Sustainable life support on Mars – the potential roles of cyanobacteria. International Journal of Astrobiology 2016:15(1):65–92. https://doi.org/10.1017/S147355041500021X">https://doi.org/10.1017/S147355041500021X
Verseux C., et al. A Low-Pressure, N2/CO2 Atmosphere Is Suitable for Cyanobacterium-Based Life-Support Systems on Mars. Frontiers in Microbiology 2021:12. https://doi.org/10.3389/fmicb.2021.611798">https://doi.org/10.3389/fmicb.2021.611798
Bothe H., Schmitz O., Yates M. G., Newton W. E. Nitrogen Fixation and Hydrogen Metabolism in Cyanobacteria. Microbiol Mol Biol Rev 2010:74(4):529–551. https://doi.org/10.1128/MMBR.00033-10">https://doi.org/10.1128/MMBR.00033-10
Guerra V., Silva T., Guaitella O. Living on mars: how to produce oxygen and fuel to get home. Europhysics News 2018:49(3):15–18. https://doi.org/10.1051/epn/2018302">https://doi.org/10.1051/epn/2018302
The renaissance of the Sabatier reaction and its applications on Earth and in space. Nature Catalysis. [Online]. [Accessed: 31.03.2023]. Available: https://www.nature.com/articles/s41929-019-0244-4
Zheng Y., Chen Z., Zhang J. Solid Oxide Electrolysis of H2O and CO2 to Produce Hydrogen and Low-Carbon Fuels. Electrochem. Energ. Rev. 2021:4(3):508–517. https://doi.org/10.1007/s41918-021-00097-4">https://doi.org/10.1007/s41918-021-00097-4
Zaccardi F., Toto E., Santonicola M. G., Laurenzi S. 3D printing of radiation shielding polyethylene composites filled with Martian regolith simulant using fused filament fabrication. Acta Astronautica 2022:190:1–13. https://doi.org/10.1016/j.actaastro.2021.09.040">https://doi.org/10.1016/j.actaastro.2021.09.040
Onen Cinar S., Chong Z. K., Kucuker M. A., Wieczorek N., Cengiz U., Kuchta K. Bioplastic Production from Microalgae: A Review. International Journal of Environmental Research and Public Health 2020:17(11). https://doi.org/10.3390/ijerph17113842">https://doi.org/10.3390/ijerph17113842
Borowitzka M. A. Microalgae as sources of pharmaceuticals and other biologically active compounds. Journal of Applied Phycology 1995:7(1):3–15. https://doi.org/10.1007/BF00003544">https://doi.org/10.1007/BF00003544
Kumar K., Dasgupta C. N., Nayak B., Lindblad P., Das D. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresource Technology 2011:102(8):4945–4953. https://doi.org/10.1016/j.biortech.2011.01.054">https://doi.org/10.1016/j.biortech.2011.01.054
Luo H.-P., Al-Dahhan M. H. Airlift column photobioreactors for Porphyridium sp. culturing: Part I. effects of hydrodynamics and reactor geometry. Biotechnology and Bioengineering 2012:109(4):932–941. https://doi.org/10.1002/bit.24361">https://doi.org/10.1002/bit.24361
Chamizo S., Mugnai G., Rossi F., Certini G., De Philippis R. Cyanobacteria Inoculation Improves Soil Stability and Fertility on Different Textured Soils: Gaining Insights for Applicability in Soil Restoration. Front. Environ. Sci. 2018:6:49. https://doi.org/10.3389/fenvs.2018.00049">https://doi.org/10.3389/fenvs.2018.00049
Billi D., Verseux C., Fagliarone C., Napoli A., Baqué M., De Vera J.-P. A Desert Cyanobacterium under Simulated Mars-like Conditions in Low Earth Orbit: Implications for the Habitability of Mars. Astrobiology 2019:19(2):158–169. https://doi.org/10.1089/ast.2017.1807">https://doi.org/10.1089/ast.2017.1807
Napoli A., et al. Absence of increased genomic variants in the cyanobacterium Chroococcidiopsis exposed to Mars-like conditions outside the space station. Sci Rep 2022:12(1):8437. https://doi.org/10.1038/s41598-022-12631-5">https://doi.org/10.1038/s41598-022-12631-5
Billi D. Challenging the Survival Thresholds of a Desert Cyanobacterium under Laboratory Simulated and Space Conditions. In Extremophiles as Astrobiological Models, Seckbach J., Stan‐Lotter H., Eds., 1st ed. Wiley, 2020, pp. 183–195. https://doi.org/10.1002/9781119593096.ch8">https://doi.org/10.1002/9781119593096.ch8
Helisch H., et al. High density long-term cultivation of Chlorella vulgaris SAG 211-12 in a novel microgravity-capable membrane raceway photobioreactor for future bioregenerative life support in SPACE. Life Sciences in Space Research 2020:24:91–107. https://doi.org/10.1016/j.lssr.2019.08.001">https://doi.org/10.1016/j.lssr.2019.08.001
Thomas D. J., Sullivan S. L., Price A. L., Zimmerman S. M. Common Freshwater Cyanobacteria Grow in 100 % CO2. Astrobiology 2005:5(1):66–74. https://doi.org/10.1089/ast.2005.5.66">https://doi.org/10.1089/ast.2005.5.66
Fajardo C., Donato M., Carrasco R., Martínez‐Rodríguez G., Mancera J. M., Fernández‐Acero F. J. Advances and challenges in genetic engineering of microalgae. Rev Aquacult 2020:12(1):365–381. https://doi.org/10.1111/raq.12322">https://doi.org/10.1111/raq.12322
Detrell G. Chlorella Vulgaris Photobioreactor for Oxygen and Food Production on a Moon Base – Potential and Challenges. Front. Astron. Space Sci. 2021:8:700579. https://doi.org/10.3389/fspas.2021.700579">https://doi.org/10.3389/fspas.2021.700579
Grosshagauer S., Kraemer K., Somoza V. The True Value of Spirulina. J. Agric. Food Chem. 2020:68(14):4109–4115. https://doi.org/10.1021/acs.jafc.9b08251">https://doi.org/10.1021/acs.jafc.9b08251
Ahmed B., Sultana S. A Critical Review on PLA-Algae Composite: Chemistry, Mechanical, and Thermal Properties. Journal of Textile Science & Engineering 2021:10(7). https://doi.org/10.37421/jtese.2020.10.425">https://doi.org/10.37421/jtese.2020.10.425
Mona S., et al. Green technology for sustainable biohydrogen production (waste to energy): A review. Science of the Total Environment 2020:728:138481. https://doi.org/10.1016/j.scitotenv.2020.138481">https://doi.org/10.1016/j.scitotenv.2020.138481
Macário I. P. E., et al. Cyanobacteria as Candidates to Support Mars Colonization: Growth and Biofertilization Potential Using Mars Regolith as a Resource. Front. Microbiol. 2022:13:840098. https://doi.org/10.3389/fmicb.2022.840098">https://doi.org/10.3389/fmicb.2022.840098
Do Nascimento M., Battaglia M. E., Sanchez Rizza L., Ambrosio R., Arruebarrena Di Palma A., Curatti L. Prospects of using biomass of N2-fixing cyanobacteria as an organic fertilizer and soil conditioner. Algal Research 2019:43:101652. https://doi.org/10.1016/j.algal.2019.101652">https://doi.org/10.1016/j.algal.2019.101652
Fernandez B. G., Rothschild L. J., Fagliarone C., Chiavarini S., Billi D. Feasibility as feedstock of the cyanobacterium Chroococcidiopsis sp. 029 cultivated with urine-supplemented moon and mars regolith simulants. Algal Research 2023:71:103044. https://doi.org/10.1016/j.algal.2023.103044">https://doi.org/10.1016/j.algal.2023.103044
Cuellar-Bermudez S. P., et al. Nutrients utilization and contaminants removal. A review of two approaches of algae and cyanobacteria in wastewater. Algal Research 2017:24(B):438–449. https://doi.org/10.1016/j.algal.2016.08.018">https://doi.org/10.1016/j.algal.2016.08.018
Fais G., et al. Wide Range Applications of Spirulina: From Earth to Space Missions. Marine Drugs 2022:20(5):299. https://doi.org/10.3390/md20050299">https://doi.org/10.3390/md20050299
Jaatinen S., Lakaniemi A.-M., Rintala J. Use of diluted urine for cultivation of Chlorella vulgaris. Environmental Technology 2016:37(9):1159–1170. https://doi.org/10.1080/09593330.2015.1105300">https://doi.org/10.1080/09593330.2015.1105300
Lafarga T., Fernández-Sevilla J. M., González-López C., Acién-Fernández F. G. Spirulina for the food and functional food industries. Food Research International 2020:137:109356. https://doi.org/10.1016/j.foodres.2020.109356">https://doi.org/10.1016/j.foodres.2020.109356
Markou G., Chatzipavlidis I., Georgakakis D. Effects of phosphorus concentration and light intensity on the biomass composition of Arthrospira (Spirulina) platensis. World J Microbiol Biotechnol 2012:28(8):2661–2670. https://doi.org/10.1007/s11274-012-1076-4">https://doi.org/10.1007/s11274-012-1076-4
Markou G. Alteration of the biomass composition of Arthrospira (Spirulina) platensis under various amounts of limited phosphorus. Bioresource Technology 2012:116:533–535. https://doi.org/10.1016/j.biortech.2012.04.022">https://doi.org/10.1016/j.biortech.2012.04.022
Lai Y. H., Puspanadan S., Lee C. K. Nutritional optimization of Arthrospira platensis for starch and Total carbohydrates production. Biotechnol Progress 2019:35(3):e2798. https://doi.org/10.1002/btpr.2798">https://doi.org/10.1002/btpr.2798
Wiebe M. G. QuornTM Myco-protein – Overview of a successful fungal product. Mycologist 2004:18(1):17–20. https://doi.org/10.1017/S0269915X04001089">https://doi.org/10.1017/S0269915X04001089
Mapstone L. Nutritional profiles of Spirulina, Chlorella, Durum Wheat, Sweet Potato and the House Cricket. Mendeley Data, V2, 2021. https://doi.org/10.17632/3MH8M429PV.2">https://doi.org/10.17632/3MH8M429PV.2
Tuomisto H. L. Food Security and Protein Supply -Cultured meat a solution? in Delivering Food Security with Supply Chain Led Innovations: understanding supply chains, providing food security, delivering choice, London, 7–9 September. [Online]. [Accessed: 28.04.2023]. Available: https://staticmer.emol.cl/Documentos/Campo/2011/08/02/20110802122710.pdf
Aikawa S., et al. Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes. Energy Environ. Sci. 2013:6(6):1844. https://doi.org/10.1039/c3ee40305j">https://doi.org/10.1039/c3ee40305j
Weiss T. L., Young E. J., Ducat D. C. A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production. Metabolic Engineering 2017:44:236–245. https://doi.org/10.1016/j.ymben.2017.10.009">https://doi.org/10.1016/j.ymben.2017.10.009
Fedeson D. T., Saake P., Calero P., Nikel P. I., Ducat D. C. Biotransformation of 2,4-dinitrotoluene in a phototrophic co-culture of engineered Synechococcus elongatus and Pseudomonas putida. Microbial Biotechnology 2020:13(4):997–1011. https://doi.org/10.1111/1751-7915.13544">https://doi.org/10.1111/1751-7915.13544
Mollers K. B., Cannella D., Jorgensen H., Frigaard N.-U. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnol Biofuels 2014:7(1):64. https://doi.org/10.1186/1754-6834-7-64">https://doi.org/10.1186/1754-6834-7-64
Niederholtmeyer H., Wolfstädter B. T., Savage D. F., Silver P. A., Way J. C. Engineering Cyanobacteria to Synthesize and Export Hydrophilic Products. Appl Environ Microbiol 2010:76(11):3462–3466. https://doi.org/10.1128/AEM.00202-10">https://doi.org/10.1128/AEM.00202-10
Afreen R., Tyagi S., Singh G. P., Singh M. Challenges and Perspectives of Polyhydroxyalkanoate Production from Microalgae/Cyanobacteria and Bacteria as Microbial Factories: An Assessment of Hybrid Biological System. Front. Bioeng. Biotechnol. 2021:9:624885. https://doi.org/10.3389/fbioe.2021.624885">https://doi.org/10.3389/fbioe.2021.624885
Lowe H., Hobmeier K., Moos M., Kremling A., Pfluger-Grau K. Photoautotrophic production of polyhydroxyalkanoates in a synthetic mixed culture of Synechococcus elongatus cscB and Pseudomonas putida cscAB. Biotechnol Biofuels 2017:10(1):190. https://doi.org/10.1186/s13068-017-0875-0">https://doi.org/10.1186/s13068-017-0875-0
Rosano G. L., Morales E. S., Ceccarelli E. A. New tools for recombinant protein production in Escherichia coli : A 5‐year update. Protein Science 2019:28(8):1412–1422. https://doi.org/10.1002/pro.3668">https://doi.org/10.1002/pro.3668
Rahman A., Anthony R. J., Sathish A., Sims R. C., Miller C. D. Effects of wastewater microalgae harvesting methods on polyhydroxybutyrate production. Bioresource Technology 2014:156:364–367. https://doi.org/10.1016/j.biortech.2014.01.034">https://doi.org/10.1016/j.biortech.2014.01.034
Borowitzka M. A. Chapter3 - Biology of Microalgae. In Microalgae in Health and Disease Prevention. Elsevier, 2018:23–72. https://doi.org/10.1016/B978-0-12-811405-6.00003-7">https://doi.org/10.1016/B978-0-12-811405-6.00003-7
NASA. Strata at Base of Mount Sharp. 2015. [Online]. [Accessed: 05.11.2023]. Available: https://mars.nasa.gov/resources/7505/strata-at-base-of-mount-sharp/
iStock and Grafner, ‘Red black 3D printer printing blue logo symbol on metal diamond plate future technology modern concept stock photo’, 2019. [Online]. [Accessed: 05.11.2023]. Available: https://www.istockphoto.com/photo/red-black-3d-printer-printing-blue-logo-symbol-on-metal-diamond-plate-future-gm1140075616-304946166
Lee E., Choi J., Ahn A., Oh E., Kweon H., Cho D. Acceptable macronutrient distribution ranges and hypertension. Clinical and Experimental Hypertension 2015:37(6):463–467. https://doi.org/10.3109/10641963.2015.1013116">https://doi.org/10.3109/10641963.2015.1013116
Rehkamp S. A Look at Calorie Sources in the American Diet. USDA Economic Research Service U.S. Department of Agriculture. Dec. 05, 2016. [Online]. [Accessed: 28.04.2023]. Available: https://www.ers.usda.gov/amber-waves/2016/december/a-look-at-calorie-sources-in-the-american-diet
Eliasson A.-C., Ed. Starch in food: structure, function and applications. In Woodhead Publishing in food science and technology. Cambridge, England: Boca Raton, FL: Woodhead Pub.; CRC Press, 2004.
Dismukes G. C., Carrieri D., Bennette N., Ananyev G. M., Posewitz M. C. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Current Opinion in Biotechnology 2008:19(3):235–240. https://doi.org/10.1016/j.copbio.2008.05.007">https://doi.org/10.1016/j.copbio.2008.05.007
Wang B., Wang J., Zhang W., Meldrum D. Application of synthetic biology in cyanobacteria and algae. Frontiers in Microbiology 2012:3. https://doi.org/10.3389/fmicb.2012.00344">https://doi.org/10.3389/fmicb.2012.00344
Hendrickx L., Mergeay M. From the deep sea to the stars: human life support through minimal communities. Current Opinion in Microbiology 2007:10(3):231–237. https://doi.org/10.1016/j.mib.2007.05.007">https://doi.org/10.1016/j.mib.2007.05.007
Janssen P. J. D., et al. Photosynthesis at the forefront of a sustainable life. Frontiers in Chemistry 2014:2. https://doi.org/10.3389/fchem.2014.00036">https://doi.org/10.3389/fchem.2014.00036
Lehto K. M., Lehto H. J., Kanervo E. A. Suitability of different photosynthetic organisms for an extraterrestrial biological life support system. Research in Microbiology 2006:157(1):69–76. https://doi.org/10.1016/j.resmic.2005.07.011">https://doi.org/10.1016/j.resmic.2005.07.011
Way J. C., Silver P. A., Howard R. J. Sun-driven microbial synthesis of chemicals in space. International Journal of Astrobiology 2011:10(4):359–364. https://doi.org/10.1017/S1473550411000218">https://doi.org/10.1017/S1473550411000218
Kiss J. Z. Plant biology in reduced gravity on the Moon and Mars. Plant Biology 2014:16(1):12–17. https://doi.org/10.1111/plb.12031">https://doi.org/10.1111/plb.12031
Villacampa A., et al. From Spaceflight to Mars g-Levels: Adaptive Response of A. Thaliana Seedlings in a Reduced Gravity Environment Is Enhanced by Red-Light Photostimulation. International Journal of Molecular Sciences 2021:22(2):899. https://doi.org/10.3390/ijms22020899">https://doi.org/10.3390/ijms22020899
Davila A. F., Willson D., Coates J. D., McKay C. P. Perchlorate on Mars: a chemical hazard and a resource for humans. International Journal of Astrobiology 2013:12(4):321–325. https://doi.org/10.1017/S1473550413000189">https://doi.org/10.1017/S1473550413000189
Oze C., et al. Perchlorate and Agriculture on Mars. Soil Systems 2021:5(3):0037. https://doi.org/10.3390/soilsystems5030037">https://doi.org/10.3390/soilsystems5030037
Fackrell L. E., Schroeder P. A., Thompson A., Stockstill-Cahill K., Hibbitts C. A. Development of martian regolith and bedrock simulants: Potential and limitations of martian regolith as an in-situ resource. Icarus 2021:354:114055. https://doi.org/10.1016/j.icarus.2020.114055">https://doi.org/10.1016/j.icarus.2020.114055
Bito T., Okumura E., Fujishima M., Watanabe F. Potential of Chlorella as a Dietary Supplement to Promote Human Health. Nutrients 2020:12(9):2524. https://doi.org/10.3390/nu12092524">https://doi.org/10.3390/nu12092524
Gissibl A., Sun A., Care A., Nevalainen H., Sunna A. Bioproducts from Euglena gracilis: Synthesis and Applications. Front. Bioeng. Biotechnol. 2019:7:108. https://doi.org/10.3389/fbioe.2019.00108">https://doi.org/10.3389/fbioe.2019.00108
St. Jeor S. T., et al. Dietary Protein and Weight Reduction. Circulation 2001:104(15):1869–1874. https://doi.org/10.1161/hc4001.096152">https://doi.org/10.1161/hc4001.096152
Bilsborough S., Mann N. A Review of Issues of Dietary Protein Intake in Humans. International Journal of Sport Nutrition and Exercise Metabolism 2006:16(2):129–152. https://doi.org/10.1123/ijsnem.16.2.129">https://doi.org/10.1123/ijsnem.16.2.129
Masood W., Annamaraju P., Uppaluri K. R. Ketogenic Diet. In StatPearls, Treasure Island (FL): StatPearls Publishing, 2023. [Online]. [Accessed: 28.04.2023]. Available: http://www.ncbi.nlm.nih.gov/books/NBK499830/
Longo R., et al. Ketogenic Diet: A New Light Shining on Old but Gold Biochemistry. Nutrients 2019:11(10):2497. https://doi.org/10.3390/nu11102497">https://doi.org/10.3390/nu11102497
Tvrzicka E., Kremmyda L.-S., Stankova B., Zak A. Fatty acids as biocompounds: their role in human metabolism, health and disease – a review. Part 1: classification, dietary sources and biological functions. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2011:155(2):117–130. https://doi.org/10.5507/bp.2011.038">https://doi.org/10.5507/bp.2011.038
Burlingame B., Nishida C., Uauy R., Weisell R. Fats and Fatty Acids in Human Nutrition: Introduction. Ann Nutr Metab 2009:55(1–3):5–7. https://doi.org/10.1159/000228993">https://doi.org/10.1159/000228993
Prince A., Zhang Y., Croniger C., Puchowicz M. Oxidative Metabolism: Glucose Versus Ketones. In Van Huffel S., Naulaers G., Caicedo A., Bruley D. F., Harrison D. K., Eds. Oxygen Transport to Tissue XXX. Advances in Experimental Medicine and Biology 2013:789:323–328. Springer, New York. https://doi.org/10.1007/978-1-4614-7411-1_43">https://doi.org/10.1007/978-1-4614-7411-1_43
Karwi Q. G., Lopaschuk G. D. CrossTalk proposal: Ketone bodies are an important metabolic fuel for the heart. The Journal of Physiology 2022:600(5):1001–1004. https://doi.org/10.1113/JP281004">https://doi.org/10.1113/JP281004
Klepper J., Diefenbach S., Kohlschütter A., Voit T. Effects of the ketogenic diet in the glucose transporter 1 deficiency syndrome. Prostaglandins, Leukotrienes and Essential Fatty Acids 2004:70(3):321–327. https://doi.org/10.1016/j.plefa.2003.07.004">https://doi.org/10.1016/j.plefa.2003.07.004
Klepper J., et al. Introduction of a ketogenic diet in young infants. J Inherit Metab Dis 2002:25(6):449–460. https://doi.org/10.1023/A:1021238900470">https://doi.org/10.1023/A:1021238900470
Chida R., Shimura M., Nishimata S., Kashiwagi Y., Kawashima H. Efficacy of ketogenic diet for pyruvate dehydrogenase complex deficiency. Pediatrics International 2018:60(11):1041–1042. https://doi.org/10.1111/ped.13700">https://doi.org/10.1111/ped.13700
Wexler I. D., et al. Outcome of pyruvate dehydrogenase deficiency treated with ketogenic diets: Studies in patients with identical mutations. Neurology 1997:49(6):1655–1661. https://doi.org/10.1212/WNL.49.6.1655">https://doi.org/10.1212/WNL.49.6.1655
Martin-McGill K. J., Bresnahan R., Levy R. G., Cooper P. N. Ketogenic diets for drug‐resistant epilepsy. Cochrane Database of Systematic Reviews 2020:6. https://doi.org/10.1002/14651858.CD001903.pub5">https://doi.org/10.1002/14651858.CD001903.pub5
Roehl K., Falco-Walter J., Ouyang B., Balabanov A. Modified ketogenic diets in adults with refractory epilepsy: Efficacious improvements in seizure frequency, seizure severity, and quality of life. Epilepsy & Behavior 2019:93:113–118. https://doi.org/10.1016/j.yebeh.2018.12.010">https://doi.org/10.1016/j.yebeh.2018.12.010
Campbell-McBride N. Gut and Physiology Syndrome: Natural Treatment for Allergies, Autoimmune Illness, Arthritis, Gut Problems, Fatigue, Hormonal Problems, Neurological Disease and More. Chelsea Green Publishing, 2020.
Sleiman S. F., et al. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. eLife 2016:5:e15092. https://doi.org/10.7554/eLife.15092">https://doi.org/10.7554/eLife.15092
Jensen N. J., Wodschow H. Z., Nilsson M., Rungby J. Effects of Ketone Bodies on Brain Metabolism and Function in Neurodegenerative Diseases. International Journal of Molecular Sciences 2020:21(22). https://doi.org/10.3390/ijms21228767">https://doi.org/10.3390/ijms21228767
Calder P. C. Functional Roles of Fatty Acids and Their Effects on Human Health. JPEN J Parenter Enteral Nutr 2015:39(1):18S–32S. https://doi.org/10.1177/0148607115595980">https://doi.org/10.1177/0148607115595980
De Cabo R., Mattson M. P. Effects of Intermittent Fasting on Health, Aging, and Disease. N Engl J Med 2019:381(26):2541–2551. https://doi.org/10.1056/NEJMra1905136">https://doi.org/10.1056/NEJMra1905136
Puchowicz M. A., et al. Neuroprotection in Diet-Induced Ketotic Rat Brain after Focal Ischemia. J Cereb Blood Flow Metab 2008:28(12):1907–1916. https://doi.org/10.1038/jcbfm.2008.79">https://doi.org/10.1038/jcbfm.2008.79
Willi S. M., Oexmann M. J., Wright N. M., Collop N. A., Key L. L. Jr. The Effects of a High-protein, Low-fat, Ketogenic Diet on Adolescents with Morbid Obesity: Body Composition, Blood Chemistries, and Sleep Abnormalities. Pediatrics 1998:101(1):61–67. https://doi.org/10.1542/peds.101.1.61">https://doi.org/10.1542/peds.101.1.61
Freeman J., Viggiotti P., Lanzi G., Tagliabue A., Perucca E. The Ketogenic diet: from molecular mechanisms to clinical effects. Epilepsy Research 2006:68(2):145–180. https://doi.org/10.1016/j.eplepsyres.2005.10.003">https://doi.org/10.1016/j.eplepsyres.2005.10.003
Edwards L. M., et al. Short‐term consumption of a high‐fat diet impairs whole‐body efficiency and cognitive function in sedentary men. FASEB Journal 2011:25(3):1088–1096. https://doi.org/10.1096/fj.10-171983">https://doi.org/10.1096/fj.10-171983
Holloway C. J., et al. A high-fat diet impairs cardiac high-energy phosphate metabolism and cognitive function in healthy human subjects. The American Journal of Clinical Nutrition 2011:93(4):748–755. https://doi.org/10.3945/ajcn.110.002758">https://doi.org/10.3945/ajcn.110.002758
Helge J. W., Richter E. A., Kiens B. Interaction of training and diet on metabolism and endurance during exercise in man. The Journal of Physiology 1996:492(1):293–306. https://doi.org/10.1113/jphysiol.1996.sp021309">https://doi.org/10.1113/jphysiol.1996.sp021309
Smith S. M., Zwart S. R., Heer M. Human Adaptation to Spaceflight: The Role of Nutrition. NASA, 2009. [Online]. [Accessed: 05.10.2023]. Available: https://www.nasa.gov/sites/default/files/human-adaptation-to-spaceflight-the-role-of-nutrition.pdf
Phillips W. J. Starvation and Survival: Some Military Considerations. Military Medicine 1994:159(7):513–516. https://doi.org/10.1093/milmed/159.7.513">https://doi.org/10.1093/milmed/159.7.513
Kaspar M. B., Austin K., Huecker M., Sarav M. Ketogenic Diet: from the Historical Records to Use in Elite Athletes. Curr Nutr Rep 2019:8(4):340–346. https://doi.org/10.1007/s13668-019-00294-0">https://doi.org/10.1007/s13668-019-00294-0
Phinney S. D. Ketogenic diets and physical performance. Nutr Metab 2004:1(1):2. https://doi.org/10.1186/1743-7075-1-2">https://doi.org/10.1186/1743-7075-1-2
Musilova M., Foing B., Beniest A., Rogers H. EuroMoonMars IMA at hi-seas campaigns in 2019: an overview of the analog missions, upgrades to the mission operations and protocols. 2020 [Online]. [Accessed: 05.10.2023]. Available: https://www.hou.usra.edu/meetings/lpsc2020/pdf/2893.pdf
University of South Florida. NASA mission tests ketogenic diet undersea, simulating life on Mars. 2017. [Online]. [Accessed: 05.10.2023]. Available: https://phys.org/news/2017-06-nasa-mission-ketogenic-diet-undersea.html
Spalvins K., Blumberga D. Production of Fish Feed and Fish Oil from Waste Biomass Using Microorganisms: Overview of Methods Analyzing Resource Availability. Environmental and Climate Technologies 2018:22(1):149–164. https://doi.org/10.2478/rtuect-2018-0010">https://doi.org/10.2478/rtuect-2018-0010
de O. Finco A. M., Mamani L. D. G., de Carvalho J. C., de Melo Pereira G. V., Thomaz-Soccol V., Soccol C. R. Technological trends and market perspectives for production of microbial oils rich in omega-3. Critical Reviews in Biotechnology 2017:37(5):656–671. https://doi.org/10.1080/07388551.2016.1213221">https://doi.org/10.1080/07388551.2016.1213221
Innis S. M. Dietary omega 3 fatty acids and the developing brain. Brain Research 2008:1237:35–43. https://doi.org/10.1016/j.brainres.2008.08.078">https://doi.org/10.1016/j.brainres.2008.08.078
Sinclair A. J., Jayasooriya A. 16 – Nutritional Aspects of Single Cell Oils: Applications of Arachidonic Acid and Docosahexaenoic Acid Oils. In Single Cell Oils (Second Edition), Z. Cohen and C. Ratledge, Eds., AOCS Press, 2010:351–368. https://doi.org/10.1016/B978-1-893997-73-8.50020-7">https://doi.org/10.1016/B978-1-893997-73-8.50020-7
Collins C. T., et al. Pre- and post-term growth in pre-term infants supplemented with higher-dose DHA: a randomised controlled trial. British Journal of Nutrition 2011:105(11):1635–1643. https://doi.org/10.1017/S000711451000509X">https://doi.org/10.1017/S000711451000509X
Petrie J. R., et al. Metabolic Engineering Camelina sativa with Fish Oil-Like Levels of DHA. PLOS ONE 2014:9(1):e85061. https://doi.org/10.1371/journal.pone.0085061">https://doi.org/10.1371/journal.pone.0085061
Ratledge C. Microbial oils: an introductory overview of current status and future prospects. OCL 2013:20(6). https://doi.org/10.1051/ocl/2013029">https://doi.org/10.1051/ocl/2013029
Garay L. A., Boundy-Mills K. L., German J. B. Accumulation of High-Value Lipids in Single-Cell Microorganisms: A Mechanistic Approach and Future Perspectives. J. Agric. Food Chem. 2014:62(13):2709–2727. https://doi.org/10.1021/jf4042134">https://doi.org/10.1021/jf4042134
Huang C., Chen X., Xiong L., Chen X., Ma L., Chen Y. Single cell oil production from low-cost substrates: The possibility and potential of its industrialization. Biotechnology Advances 2013:31(2):129–139. https://doi.org/10.1016/j.biotechadv.2012.08.010">https://doi.org/10.1016/j.biotechadv.2012.08.010
Christophe G., et al. Recent developments in microbial oils production: a possible alternative to vegetable oils for biodiesel without competition with human food? Braz. arch. biol. technol. 2012:55(1):29–46. https://doi.org/10.1590/S1516-89132012000100004">https://doi.org/10.1590/S1516-89132012000100004
Liu J., Sun Z., Chen F. Heterotrophic Production of Algal Oils. In Biofuels from Algae, Elsevier, 2014:111–142. https://doi.org/10.1016/B978-0-444-59558-4.00006-1">https://doi.org/10.1016/B978-0-444-59558-4.00006-1
Račko E., Blumberga D., Spalviņš K., Marčiulaitienė E. Ranking of By-products for Single Cell Oil Production. Case of Latvia. Environmental and Climate Technologies 2020:24(2):258–271. https://doi.org/10.2478/rtuect-2020-0071">https://doi.org/10.2478/rtuect-2020-0071
Chang G., Gao N., Tian G., Wu Q., Chang M., Wang X. Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp. S31 with constantly high oxygen transfer coefficient. Bioresource Technology 2013:142:400–406. https://doi.org/10.1016/j.biortech.2013.04.107">https://doi.org/10.1016/j.biortech.2013.04.107
Ma W., et al. Efficient co-production of EPA and DHA by Schizochytrium sp. via regulation of the polyketide synthase pathway. Commun Biol 2022:5(1356). https://doi.org/10.1038/s42003-022-04334-4">https://doi.org/10.1038/s42003-022-04334-4
Kim H.-Y., Huang B. X., Spector A. A. Phosphatidylserine in the brain: Metabolism and function. Progress in Lipid Research 2014:56:1–18. https://doi.org/10.1016/j.plipres.2014.06.002">https://doi.org/10.1016/j.plipres.2014.06.002
Singh M. Essential fatty acids, DHA and human brain. Indian J Pediatr 2005:72(3):239–242. https://doi.org/10.1007/BF02859265">https://doi.org/10.1007/BF02859265
Derbyshire E. Brain Health across the Lifespan: A Systematic Review on the Role of Omega-3 Fatty Acid Supplements. Nutrients 2018:10(8):1094. https://doi.org/10.3390/nu10081094">https://doi.org/10.3390/nu10081094
Reimers A., Ljung H. The emerging role of omega-3 fatty acids as a therapeutic option in neuropsychiatric disorders. Therapeutic Advances in Psychopharmacology 2019:9. https://doi.org/10.1177/2045125319858901">https://doi.org/10.1177/2045125319858901
Gutiérrez S., Svahn S. L., Johansson M. E. Effects of Omega-3 Fatty Acids on Immune Cells. International Journal of Molecular Sciences 2019:20(20):5028. https://doi.org/10.3390/ijms20205028">https://doi.org/10.3390/ijms20205028
Pizzini A., Lunger L., Sonnweber T., Weiss G., Tancevski I. The Role of Omega-3 Fatty Acids in the Setting of Coronary Artery Disease and COPD: A Review. Nutrients 2018:10(12):1864. https://doi.org/10.3390/nu10121864">https://doi.org/10.3390/nu10121864.
Watanabe Y., Tatsuno I. Omega-3 polyunsaturated fatty acids for cardiovascular diseases: present, past and future. Expert Review of Clinical Pharmacology 2017:10(8):865–873. https://doi.org/10.1080/17512433.2017.1333902">https://doi.org/10.1080/17512433.2017.1333902
Roohani A. M., et al. Effect of spirulina Spirulina platensis as a complementary ingredient to reduce dietary fish meal on the growth performance, whole-body composition, fatty acid and amino acid profiles, and pigmentation of Caspian brown trout (Salmo trutta caspius) juveniles. Aquaculture Nutrition 2019:25(3):633–645. https://doi.org/10.1111/anu.12885">https://doi.org/10.1111/anu.12885
Bertoldi F. C., Sant’Anna E., da C. Braga M. V., Oliveira J. L. B. Lipids, fatty acids composition and carotenoids of Chlorella vulgaris cultivated in hydroponic wastewater. Grasas y Aceites 2006:57(3). https://doi.org/10.3989/gya.2006.v57.i3.48">https://doi.org/10.3989/gya.2006.v57.i3.48
Tokuşoglu Ö., üUnal M. K. Biomass Nutrient Profiles of Three Microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. Journal of Food Science 2003:68(4):1144–1148. https://doi.org/10.1111/j.1365-2621.2003.tb09615.x">https://doi.org/10.1111/j.1365-2621.2003.tb09615.x
Diraman H., Koru E., Dibeklioglu H. Fatty Acid Profile of Spirulina platensis Used as a Food Supplement. Israeli Journal of Aquaculture – Bamidgeh 2009:61. https://doi.org/10.46989/001c.20548">https://doi.org/10.46989/001c.20548
Bailey R. B., et al. Enhanced production of lipids containing polyenoic fatty acid by very high density cultures of eukaryotic microbes in fermentors. [Online]. [Accessed: 28.04.2023]. Available: https://patents.google.com/patent/US6607900B2/en
Liang Y., Sarkany N., Cui Y., Yesuf J., Trushenski J., Blackburn J. W. Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Bioresource Technology 2010:101(10):3623–3627. https://doi.org/10.1016/j.biortech.2009.12.087">https://doi.org/10.1016/j.biortech.2009.12.087
Soni R. A., Sudhakar K., Rana R. S. Spirulina – From growth to nutritional product: A review. Trends in Food Science & Technology 2017:69:157–171. https://doi.org/10.1016/j.tifs.2017.09.010">https://doi.org/10.1016/j.tifs.2017.09.010
Spalvins K., Blumberga D. Single cell oil production from waste biomass: review of applicable agricultural by-products. Environmental and Climate Technologies 2019:23(2):325–337. https://doi.org/10.2478/rtuect-2019-0071">https://doi.org/10.2478/rtuect-2019-0071
Spalvins K., Vamza I., Blumberga D. Single Cell Oil Production from Waste Biomass: Review of Applicable Industrial By-Products. Environmental and Climate Technologies 2019:23(2):325–337. https://doi.org/10.2478/rtuect-2019-0071">https://doi.org/10.2478/rtuect-2019-0071
Li J., et al. A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources. Bioresour Technol 2015:177:51–57. https://doi.org/10.1016/j.biortech.2014.11.046">https://doi.org/10.1016/j.biortech.2014.11.046
Patil K. P., Gogate P. R. Improved synthesis of docosahexaenoic acid (DHA) using Schizochytrium limacinum SR21 and sustainable media. Chemical Engineering Journal 2015:268:187–196. https://doi.org/10.1016/j.cej.2015.01.050">https://doi.org/10.1016/j.cej.2015.01.050
Sun L., Ren L., Zhuang X., Ji X., Yan J., Huang H. Differential effects of nutrient limitations on biochemical constituents and docosahexaenoic acid production of Schizochytrium sp. Bioresource Technology 2014:159:199–206. https://doi.org/10.1016/j.biortech.2014.02.106">https://doi.org/10.1016/j.biortech.2014.02.106
Bonilla J. R., Concha J. L. H. Methods of extraction, refining and concentration of fish oil as a source of Omega-3 fatty acids. Agricultural Science and Technology 2018:19(3):621–644. https://doi.org/10.21930/rcta.vol19_num2_art:684">https://doi.org/10.21930/rcta.vol19_num2_art:684
Hart B., Schurr R., Narendranath N., Kuehnle A., Colombo S. M. Digestibility of Schizochytrium sp. whole cell biomass by Atlantic salmon (Salmo salar). Aquaculture 2021:533:736156. https://doi.org/10.1016/j.aquaculture.2020.736156">https://doi.org/10.1016/j.aquaculture.2020.736156
Greenwalt C. J. Utilization of crop residue and production of edible single cell oil for an advanced life support system – ProQuest. 2000. [Online]. [Accessed: 28.04.2023]. Available: https://www.proquest.com/openview/b353c1d289a46d32ff761317db9b9bc6/1?cbl=18750&diss=y&pq-origsite=gscholar&parentSessionId=tU1Nw%2FUgeOuGU3Z%2BbNAdwDkNYwMUrQCoAf0RdIfeMEY%3D
Zhang J., et al. Microbial lipid production by the oleaginous yeast Cryptococcus curvatus O3 grown in fed-batch culture. Biomass and Bioenergy 2011:35(5):1906–1911. https://doi.org/10.1016/j.biombioe.2011.01.024">https://doi.org/10.1016/j.biombioe.2011.01.024
Hao S., et al. The effects of different extraction methods on composition and storage stability of sturgeon oil. Food Chemistry 2015:173:274–282. https://doi.org/10.1016/j.foodchem.2014.09.154">https://doi.org/10.1016/j.foodchem.2014.09.154
Haq M., Ahmed R., Cho Y.-J., Chun B.-S. Quality Properties and Bio-potentiality of Edible Oils from Atlantic Salmon By-products Extracted by Supercritial Carbon Dioxide and Conventional Methods. Waste Biomass Valor 2017:8(6):1953–1967. https://doi.org/10.1007/s12649-016-9710-2">https://doi.org/10.1007/s12649-016-9710-2
Lopes B. L. F., Sánchez-Camargo A. P., Ferreira A. L. K., Grimaldi R., Paviani L. C., Cabral F. A. Selectivity of supercritical carbon dioxide in the fractionation of fish oil with a lower content of EPA+DHA. The Journal of Supercritical Fluids 2012:61:78–85. https://doi.org/10.1016/j.supflu.2011.09.015">https://doi.org/10.1016/j.supflu.2011.09.015
Ferdosh S., Sarker Md. Z. I., Norulaini Nik Ab Rahman N., Haque Akanda Md. J., Ghafoor K., Kadir Mohd. O. A. Simultaneous Extraction and Fractionation of Fish Oil from Tuna By-Product Using Supercritical Carbon Dioxide (SC-CO2). Journal of Aquatic Food Product Technology 2016:25(2):230–239. https://doi.org/10.1080/10498850.2013.843629">https://doi.org/10.1080/10498850.2013.843629
Perretti G., Motori A., Bravi E., Favati F., Montanari L., Fantozzi P. Supercritical carbon dioxide fractionation of fish oil fatty acid ethyl esters. The Journal of Supercritical Fluids 2007:40(3):349–353. https://doi.org/10.1016/j.supflu.2006.07.020">https://doi.org/10.1016/j.supflu.2006.07.020
Létisse M., Comeau L. Enrichment of eicosapentaenoic acid and docosahexaenoic acid from sardine by-products by supercritical fluid fractionation. Journal of Separation Science 2008:31(8):1374–1380. https://doi.org/10.1002/jssc.200700501">https://doi.org/10.1002/jssc.200700501
Carneiro M. L. N. M., et al. Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA). Renewable and Sustainable Energy Reviews 2017:73:632–653. https://doi.org/10.1016/j.rser.2017.01.152">https://doi.org/10.1016/j.rser.2017.01.152
Lam M. K., Lee K. T. Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology Advances 2012:30(3):673–690. https://doi.org/10.1016/j.biotechadv.2011.11.008">https://doi.org/10.1016/j.biotechadv.2011.11.008
McKinlay J. B., Harwood C. S. Photobiological production of hydrogen gas as a biofuel. Current Opinion in Biotechnology 2010:21(3):244–251. https://doi.org/10.1016/j.copbio.2010.02.012">https://doi.org/10.1016/j.copbio.2010.02.012
Bauen A., Howes J., Bertuccioli L., Chudziak C. Review of the potential for biofuels in aviation. E4tech, Final report, Aug. 2009. [Online]. [Accessed: 28:04:2023]. Available: https://citeseerx.ist.psu.edu/doc/10.1.1.170.8750
Holmgren J. Creating Alternative Fuel Options for the Aviation Industry: Role of Biofuels. Presented at the Holmgren 2009. Jennifer Holmgren, Creating Alternative Fuel for the Aviation Industry, UOP, ICAO Workshop on Aviation and Alternative Fuels, Montreal, Canada, Nov. 02, 2009.
Fukuda H., Kondo A., Noda H. Biodiesel fuel production by transesterification of oils. Journal of Bioscience and Bioengineering 2001:92(5):405–416. https://doi.org/10.1016/S1389-1723(01)80288-7">https://doi.org/10.1016/S1389-1723(01)80288-7
Brown R., Holmgren J. Fast Pyrolysis and Bio-Oil Upgrading. [Online]. [Accessed: 28.04.2023]. Available: https://www.driveonwood.com/static/media/uploads/pdf/fast_pyrolysis.pdf
Alternative Fuels Data Center: Renewable Gasoline. US Department of Energy. Energy Effciency & Renewable Energy. [Online]. [Accessed: 28.04.2023]. Available: https://afdc.energy.gov/fuels/emerging_hydrocarbon.html
Alternative Fuels Data Center: Biodiesel Production and Distribution. US Department of Energy. Energy Efficiency & Renewable Energy. [Online]. [Accessed: 28.04.2023]. Available: https://afdc.energy.gov/fuels/biodiesel_production.html
Evans D. G. National Non-Food Crops Centre – NNFCC 08-017 International Biofuels Strategy Project. Liquid Transport Biofuels – Technology Status Report. Jun. 11, 2008. [Online]. [Accessed: 28.04.2023]. Available: https://web.archive.org/web/20080611062858/http:/www.nnfcc.co.uk/metadot/index.pl?id=6597%3Bisa%3DDBRow%3Bop%3Dshow%3Bdbview_id%3D2457
Liu J., Sun L., Xu W., Wang Q., Yu S., Sun J. Current advances and future perspectives of 3D printing natural-derived biopolymers. Carbohydrate Polymers 2019:207:297–316. https://doi.org/10.1016/j.carbpol.2018.11.077">https://doi.org/10.1016/j.carbpol.2018.11.077
Chia W. Y., Ying Tang D. Y., Khoo K. S., Kay Lup A. N., Chew K. W. Nature’s fight against plastic pollution: Algae for plastic biodegradation and bioplastics production. Environmental Science and Ecotechnology 2020:4:100065. https://doi.org/10.1016/j.ese.2020.100065">https://doi.org/10.1016/j.ese.2020.100065
Keshavarz T., Roy I. Polyhydroxyalkanoates: bioplastics with a green agenda. Current Opinion in Microbiology 2010:3:321–326. https://doi.org/10.1016/j.mib.2010.02.006">https://doi.org/10.1016/j.mib.2010.02.006
Chinthapalli R., et al. Biobased Building Blocks and Polymers – Global Capacities, Production and Trends, 2018–2023. Industrial Biotechnology 2019:15(4):237–241. https://doi.org/10.1089/ind.2019.29179.rch">https://doi.org/10.1089/ind.2019.29179.rch
Meier M. A. R., Metzger J. O., Schubert U. S. Plant oil renewable resources as green alternatives in polymer science. Chem. Soc. Rev. 2007:36(11):1788–1802. https://doi.org/10.1039/b703294c">https://doi.org/10.1039/b703294c
Feofilovs M., Spalvins K., Valters K. Bibliometric Review of State-of-the-art Research on Microbial Oils’ Use for Biobased Epoxy. Environmental and Climate Technologies 2023:27(1):150–163. https://doi.org/10.2478/rtuect-2023-0012">https://doi.org/10.2478/rtuect-2023-0012
Stemmelen M., Pessel F., Lapinte V., Caillol S., Habas J.-P., Robin J.-J. A fully biobased epoxy resin from vegetable oils: From the synthesis of the precursors by thiol-ene reaction to the study of the final material. Journal of Polymer Science Part A: Polymer Chemistry 2011:49(11):2434–2444. https://doi.org/10.1002/pola.24674">https://doi.org/10.1002/pola.24674
Dogan E., Kusefoglu S. Synthesis and in situ foaming of biodegradable malonic acid ESO polymers. Journal of Applied Polymer Science 2008:110(2):1129–1135. ttps://doi.org/10.1002/app.28708
La Scala J., Wool R. P. Fundamental thermo-mechanical property modeling of triglyceride-based thermosetting resins. Journal of Applied Polymer Science 2013:127(3):1812–1826. https://doi.org/10.1002/app.37927">https://doi.org/10.1002/app.37927
Negrell C., Cornille A., de Andrade Nascimento P., Robin J.-J., Caillol S. New bio-based epoxy materials and foams from microalgal oil. European Journal of Lipid Science and Technology 2017:119(4):1600214. https://doi.org/10.1002/ejlt.201600214">https://doi.org/10.1002/ejlt.201600214
Taoka Y., Nagano N., Okita Y., Izumida H., Sugimoto S., Hayashi M. Influences of Culture Temperature on the Growth, Lipid Content and Fatty Acid Composition of Aurantiochytrium sp. Strain mh0186. Mar Biotechnol 2009:11(3):368–374. https://doi.org/10.1007/s10126-008-9151-4">https://doi.org/10.1007/s10126-008-9151-4
Roesle P., et al. Synthetic Polyester from Algae Oil. Angewandte Chemie International Edition 2009:53(26):6800–6804. https://doi.org/10.1002/anie.201403991">https://doi.org/10.1002/anie.201403991
Petrovic Z. S., et al. Polyols and Polyurethanes from Crude Algal Oil. Journal of the American Oil Chemists’ Society 2013:90(7):1073–1078. https://doi.org/10.1007/s11746-013-2245-9">https://doi.org/10.1007/s11746-013-2245-9
Pawar M. S., Kadam A. S., Dawane B. S., Yemul O. S. Synthesis and characterization of rigid polyurethane foams from algae oil using biobased chain extenders. Polym. Bull. 2016:73(3):727–741. https://doi.org/10.1007/s00289-015-1514-1">https://doi.org/10.1007/s00289-015-1514-1
Arbenz A., Perrin R., Averous L. Elaboration and Properties of Innovative Biobased PUIR Foams from Microalgae. J Polym Environ 2018:26(1):254–262. https://doi.org/10.1007/s10924-017-0948-y">https://doi.org/10.1007/s10924-017-0948-y
Hidalgo P., Navia R., Hunter R., Gonzalez M. E., Echeverría A. Development of novel bio-based epoxides from microalgae Nannochloropsis gaditana lipids. Composites Part B: Engineering 2019:166:653–662. https://doi.org/10.1016/j.compositesb.2019.02.049">https://doi.org/10.1016/j.compositesb.2019.02.049
Bhatia A., Sehgal A. K. Additive manufacturing materials, methods and applications: A review. Materialstoday: Proceedings, International Virtual Conference on Sustainable Materials (IVCSM-2k20) 2023:81(2):1060–1067. https://doi.org/10.1016/j.matpr.2021.04.379">https://doi.org/10.1016/j.matpr.2021.04.379
Malburet S., Di Mauro C., Noè C., Mija A., Sangermano M., Graillot A. Sustainable access to fully biobased epoxidized vegetable oil thermoset materials prepared by thermal or UV-cationic processes. RSC Adv. 2020:10(68):41954–41966. https://doi.org/10.1039/D0RA07682A">https://doi.org/10.1039/D0RA07682A
Chen Q., Mangadlao J. D., Wallat J., De Leon A., Pokorski J. K., Advincula R. C. 3D Printing Biocompatible Polyurethane/Poly(lactic acid)/Graphene Oxide Nanocomposites: Anisotropic Properties. ACS Appl. Mater. Interfaces 2017:9(4):4015–4023. https://doi.org/10.1021/acsami.6b11793">https://doi.org/10.1021/acsami.6b11793
Voet V. S. D., Guit J., Loos K. Sustainable Photopolymers in 3D Printing: A Review on Biobased, Biodegradable, and Recyclable Alternatives. Macromol. Rapid Commun. 2021:42(3):2000475. https://doi.org/10.1002/marc.202000475">https://doi.org/10.1002/marc.202000475
Cui Y., Yang J., Lei D., Su J. 3D Printing of a Dual-Curing Resin with Cationic Curable Vegetable Oil. Ind. Eng. Chem. Res. 2020:59(25):11381–11388. https://doi.org/10.1021/acs.iecr.0c01507">https://doi.org/10.1021/acs.iecr.0c01507