Have a personal or library account? Click to login
Insights of Bioeconomy: Biopolymer Evaluation Based on Sustainability Criteria Cover

Insights of Bioeconomy: Biopolymer Evaluation Based on Sustainability Criteria

Open Access
|Jul 2023

References

  1. Heimann T. Bioeconomy and SDGs: Does the Bioeconomy Support the Achievement of the SDGs? Earths Future 2018:7(1):43–57. https://doi.org/10.1029/2018EF001014">https://doi.org/10.1029/2018EF001014
  2. OECD. OECD Principles of Corporate Governance 2004. Paris: OECD, 2004.
  3. De Besi M., McCormick K. Towards a bioeconomy in Europe: National, regional and industrial strategies. Sustainability (Switzerland) 2015:7(8). https://doi.org/10.3390/su70810461">https://doi.org/10.3390/su70810461
  4. Thorenz A., et al. Assessment of agroforestry residue potentials for the bioeconomy in the European Union. J Clean Prod 2018:176:348–359. https://doi.org/10.1016/j.jclepro.2017.12.143">https://doi.org/10.1016/j.jclepro.2017.12.143
  5. Sanz-Hernández A., Esteban E., Garrido P. Transition to a bioeconomy: Perspectives from social sciences. J Clean Prod 2019:224:107–119. https://doi.org/10.1016/j.jclepro.2019.03.168">https://doi.org/10.1016/j.jclepro.2019.03.168
  6. Maraveas C. Production of sustainable and biodegradable polymers from agricultural waste. Polymers 2020:12(5):1127. https://doi.org/10.3390/POLYM12051127">https://doi.org/10.3390/POLYM12051127
  7. Awasthi M. K., et al. Agricultural waste biorefinery development towards circular bioeconomy. Renewable Sustainable Energy Reviews 2022:158:112122. https://doi.org/10.1016/j.rser.2022.112122">https://doi.org/10.1016/j.rser.2022.112122
  8. Gil A., et al. Mixture optimization of anaerobic co-digestion of tomato and cucumber waste. Env Tech 2015:36:2628–2636. https://doi.org/10.1080/09593330.2015.1041425">https://doi.org/10.1080/09593330.2015.1041425
  9. Yaashikaa P. R., et al. Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review. Bioresour Technol 2022:343(2):126126. https://doi.org/10.1016/j.biortech.2021.126126">https://doi.org/10.1016/j.biortech.2021.126126
  10. Prakash K. S., et al. Utilization of Agricultural Waste Biomass and Recycling Towards Circular Bioeconomy. Environ Sci Pollut Res 202:30:8526–85392. https://doi.org/10.1007/s11356-022-20669-1">https://doi.org/10.1007/s11356-022-20669-1
  11. Lau W. W. Y., et al. Evaluating scenarios toward zero plastic pollution. Science 2020:369(6510):1455–1461. https://doi.org/10.1126/SCIENCE.ABA9475">https://doi.org/10.1126/SCIENCE.ABA9475
  12. Chia W. Y., et al. Nature’s fight against plastic pollution: Algae for plastic biodegradation and bioplastics production. Env Sci Ecotech 2020:4:100065. https://doi.org/10.1016/j.ese.2020.100065">https://doi.org/10.1016/j.ese.2020.100065
  13. Gowthaman N. S. K., et al. Chapter 15 - Advantages of biopolymers over synthetic polymers: social, economic, and environmental aspects. Biopol Ind App 2021:351–372. https://doi.org/10.1016/B978-0-12-819240-5.00015-8">https://doi.org/10.1016/B978-0-12-819240-5.00015-8
  14. Talan A., et al. Biorefinery strategies for microbial bioplastics production: Sustainable pathway towards Circular Bioeconomy. Bioresour Technol Rep 2022:17:100875. https://doi.org/10.1016/j.biteb.2021.100875">https://doi.org/10.1016/j.biteb.2021.100875
  15. Patel N., Feofilovs M., Blumberga D. Agro Biopolymer: A Sustainable Future of Agriculture-State of Art Review. Env Clim Techn 2022:26:499–511. https://doi.org/10.2478/rtuect-2022-0038">https://doi.org/10.2478/rtuect-2022-0038
  16. Lin R., et al. Sustainability prioritization framework of biorefinery: A novel multi-criteria decision-making model under uncertainty based on an improved interval goal programming method. J Clean Prod 2020:251:119729. https://doi.org/10.1016/j.jclepro.2019.119729">https://doi.org/10.1016/j.jclepro.2019.119729
  17. Krzyżaniak M., Stolarski M. J. Life cycle assessment of camelina and crambe production for biorefinery and energy purposes. J Clean Prod 2019:237:117755. https://doi.org/10.1016/j.jclepro.2019.117755">https://doi.org/10.1016/j.jclepro.2019.117755
  18. Papadaskalopoulou C., et al. Comparative life cycle assessment of a waste to ethanol biorefinery system versus conventional waste management methods. Resour Conserv Recycl 2019:149:130–139. https://doi.org/10.1016/j.resconrec.2019.05.006">https://doi.org/10.1016/j.resconrec.2019.05.006
  19. Karayılan S., et al. Prospective evaluation of circular economy practices within plastic packaging value chain through optimization of life cycle impacts and circularity. Resour Conserv Recycl 2021:173:105691. https://doi.org/10.1016/j.resconrec.2021.105691">https://doi.org/10.1016/j.resconrec.2021.105691
  20. Van de velde K., Kiekens P. Biopolymers: Overview of several properties and consequences on their applications. Polym Test 2002:21(4):433–442. https://doi.org/10.1016/S0142-9418(01)00107-6">https://doi.org/10.1016/S0142-9418(01)00107-6
  21. Wellisch M., et al. Biorefinery systems-potential contributors to sustainable innovation. Biof Bioprod Bioref 2010:4(3):275–286. https://doi.org/10.1002/bbb.217">https://doi.org/10.1002/bbb.217
  22. Budzinski M., Nitzsche R. Comparative economic and environmental assessment of four beech wood based biorefinery concepts. Bioresour Technol 2016:216:613–621. https://doi.org/10.1016/j.biortech.2016.05.111">https://doi.org/10.1016/j.biortech.2016.05.111
  23. Helbig C., et al. Extending the geopolitical supply risk indicator: Application of life cycle sustainability assessment to the petrochemical supply chain of polyacrylonitrile-based carbon fibers. J Clean Prod 2016:137:1170–1178. https://doi.org/10.1016/j.jclepro.2016.07.214">https://doi.org/10.1016/j.jclepro.2016.07.214
  24. Gironi F., Piemonte V. Bioplastics and petroleum-based plastics: Strengths and weaknesses. En Sour Part A: Recov, Utiliz Env Ef 2011:33(21):1949–1959. https://doi.org/10.1080/15567030903436830">https://doi.org/10.1080/15567030903436830
  25. Vlachokostas C., et al. Supporting decision making to achieve circularity via a biodegradable waste-to-bioenergy and compost facility. J Environ Manage 2021:285:112215. https://doi.org/10.1016/j.jenvman.2021.112215">https://doi.org/10.1016/j.jenvman.2021.112215
  26. Agarwal S. Major factors affecting the characteristics of starch based biopolymer films. Eur Polym J 2021:160:110788. https://doi.org/10.1016/j.eurpolymj.2021.110788">https://doi.org/10.1016/j.eurpolymj.2021.110788
  27. Hertwich E. G., et al. Human toxicity potentials for life-cycle assessment and toxics release inventory risk screening. Environ Toxicol Chem 2001:20(4):928–939. https://doi.org/10.1002/etc.5620200431">https://doi.org/10.1002/etc.5620200431
  28. Taherimehr M., et al. Trends and challenges of biopolymer-based nanocomposites in food packaging. Compr Rev Food Sci Food Saf 2021:20(6):5321–5344. https://doi.org/10.1111/1541-4337.12832">https://doi.org/10.1111/1541-4337.12832
  29. Marvin A. W., et al. Economic Optimization of a Lignocellulosic Biomass-to-Ethanol Supply Chain. Chem Eng Sci 2012:67(1):68–79. https://doi.org/10.1016/j.ces.2011.05.055">https://doi.org/10.1016/j.ces.2011.05.055
  30. Mtibe A., et al. Synthetic Biopolymers and Their Composites: Advantages and Limitations an Overview. Macromol Rapid Commun 2021:42(15):2100130. https://doi.org/10.1002/marc.202100130">https://doi.org/10.1002/marc.202100130
  31. Galiano F., et al. Advances in biopolymer-based membrane preparation and applications. J Memb Sci 2018:564:562–586. https://doi.org/10.1016/j.memsci.2018.07.059">https://doi.org/10.1016/j.memsci.2018.07.059
  32. Momani B. L. Assessment of the Impacts of Bioplastics: Energy Usage, Fossil Fuel Usage, Pollution, Health Effects, Effects on the Food Supply, and Economic Effects Compared to Petroleum Based Plastics. Worcester: Worcester Polytechnic Institute, 2009.
  33. Spierling S., et al. Bio-based plastics - A review of environmental, social and economic impact assessments. J Clean Prod 2018:185:476–491. https://doi.org/10.1016/j.jclepro.2018.03.014">https://doi.org/10.1016/j.jclepro.2018.03.014
  34. Emadian S. M, Onay T. T., Demirel B. Biodegradation of bioplastics in natural environments. Waste Manag 2017:59:526–536. https://doi.org/10.1016/j.wasman.2016.10.006">https://doi.org/10.1016/j.wasman.2016.10.006
  35. Jem K. J., Tan B. The development and challenges of poly (lactic acid) and poly (glycolic acid). Adv Ind Eng Pol Res 2020:3(2):60–70. https://doi.org/10.1016/j.aiepr.2020.01.002">https://doi.org/10.1016/j.aiepr.2020.01.002
  36. Maraveas C. Production of sustainable and biodegradable polymers from agricultural waste. Polymers 2020:12(5):1127. https://doi.org/10.3390/POLYM12051127">https://doi.org/10.3390/POLYM12051127
  37. Rezvani G. E., et al. The life cycle assessment for polylactic acid (PLA) to make it a low-carbon material. Polymers 2021:13(11):1854. https://doi.org/10.3390/polym13111854">https://doi.org/10.3390/polym13111854
  38. Chalermthai B., et al. Life cycle assessment of bioplastic production from whey protein obtained from dairy residues. Bioresour Technol Rep 2021:15:100695. https://doi.org/10.1016/j.biteb.2021.100695">https://doi.org/10.1016/j.biteb.2021.100695
  39. Wellenreuther C., Wolf A., Zander N. Cost structure of bio-based plastics: A Monte-Carlo-analysis for PLA. HWWI Res Pap 2021:197. http://hdl.handle.net/10419/235600
  40. Lackner M. Biopolymers. Handbook of Climate Change Mitigation and Adaptation. New York: Springer, 2015.
  41. EUBP_Facts_and_figures [Online]. [Accessed 18.10. 2022]. Available: http://www.european-bioplastics.org/
  42. McAdam B., et al. Production of polyhydroxybutyrate (PHB) and factors impacting its chemical and mechanical characteristics. Polymers 2020:12(12):2908. https://doi.org/10.3390/polym12122908">https://doi.org/10.3390/polym12122908
  43. Harding K. G., et al. Environmental analysis of plastic production processes: Comparing petroleum-based polypropylene and polyethylene with biologically-based poly-β-hydroxybutyric acid using life cycle analysis. J Biotechnol 2007:130(1):57–66. https://doi.org/10.1016/j.jbiotec.2007.02.012">https://doi.org/10.1016/j.jbiotec.2007.02.012
  44. Nonato R., Mantelatto P., Rossell C. Integrated production of biodegradable plastic, sugar and ethanol. Appl Microbiol Biotechnol 2001:57:1–5. https://doi.org/10.1007/s002530100732">https://doi.org/10.1007/s002530100732
  45. Vilpoux O., Averous L. Starch-based plastics. Technology, use and potentialities of Latin American starchy tubers. Book 3, Chapter 18. Sao Paolo: NGO Raízes and Cargill Foundation, 2004:521–553.
  46. Hazrol M. D., et al. Corn starch (Zea mays) biopolymer plastic reaction in combination with sorbitol and glycerol. Polymers 2021:13(2):242. https://doi.org/10.3390/polym13020242">https://doi.org/10.3390/polym13020242
  47. Yusoff N.H., et al.Recent trends on bioplastics synthesis and characterizations: Polylactic acid (PLA) incorporated with tapiocastarch for packaging applications. https://doi.org/10.1016/j.molstruc.2021.129954">https://doi.org/10.1016/j.molstruc.2021.129954
  48. DeLéis C. M., et al. Environmental and energy analysis of biopolymer film based on cassavastarch in Brazil.J Clean Prod 2017:143:76–89. https://doi.org/10.1016/j.jclepro.2016.12.147">https://doi.org/10.1016/j.jclepro.2016.12.147
  49. Singh R., Kaur S., Sachdev P.A.A cost effective technology for isolation of potato starch and its utilization in formulation of ready to cook, non-cereal, and non-glutinous soup mix.J Food Meas Char2021:15:3168–3181. https://doi.org/10.1007/s11694-021-00887-w">https://doi.org/10.1007/s11694-021-00887-w
  50. Muneer F., et al.Preparation, Properties, Protein Cross-Linking and Biodegradability of Plasticizer-Solvent Free Hemp Fibre Reinforced Wheat Gluten, Glutenin, and Gliadin Composites.Bioresources2014:9(3):5246–5261. 10.15376/biores.9.3.5246-5261">http://dx.doi.org/10.15376/biores.9.3.5246-5261
  51. Jones A., Mandal A., Sharma S. Protein-based bioplastics and their antibacterial potential.J Appl Polym Sci 2015:132(18):41931. https://doi.org/10.1002/app.41931">https://doi.org/10.1002/app.41931
  52. Carvalho-Silva L. B.,Vissotto F. Z., Amaya-Farfan J. Physico-Chemical Properties of Milk Whey Protein Agglomerates for Usein Oral Nutritional Therapy.Food Nutr Sci2013:4:9B. https://doi.org/10.4236/fns.2013.49a2010">https://doi.org/10.4236/fns.2013.49a2010
  53. Thammahiwes S., Riyajan S. A., Kaewtatip K. Preparation and properties of wheat gluten based bioplastics with fish scale.J Cereal Sci2017:75:186–191. https://doi.org/10.1016/j.jcs.2017.04.003">https://doi.org/10.1016/j.jcs.2017.04.003
  54. Chalermthai B., et al.Techno-economic assessment of whey protein-based plastic production from a co-polymerization process.Polymers 2020:12(4):847. https://doi.org/10.3390/POLYM12040847">https://doi.org/10.3390/POLYM12040847
  55. Foroughi F., et al. A review onthe life cycle assessment of cellulose: From properties to the potential of making it a low carbonmaterial.Materials2021:14(4):714. https://doi.org/10.3390/ma14040714">https://doi.org/10.3390/ma14040714
  56. Tejado A., et al. Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers.Cellulose 2012:19:831–842. https://doi.org/10.1007/s10570-012-9694-4">https://doi.org/10.1007/s10570-012-9694-4
  57. Mohanty A. K., et al. Development of Renewable Resource-Based Cellulose Acetate Bioplastic: Effect of Process Engineering on the Performance of CellulosicPlastics.Polym Eng Sci2003:43(5):1151–1161. https://doi.org/10.1002/pen.10097">https://doi.org/10.1002/pen.10097
  58. Rentoy F., et al. Development of Cellulose-based Bioplastic from Corn Stalks. 2018.
  59. Yadav P., et al. Assessment of the environmental impact of polymeric membrane production. J Memb Sci 2021:622:118987. https://doi.org/10.1016/j.memsci.2020.118987">https://doi.org/10.1016/j.memsci.2020.118987
  60. Amaral H. R., et al. Production of high-purity cellulose, cellulose acetate and cellulose-silica composite from babassu coconut shells. Carbohydr Polym 2019:210:127–134. https://doi.org/10.1016/j.carbpol.2019.01.061">https://doi.org/10.1016/j.carbpol.2019.01.061
  61. Molenveld K., et al. Biobased plastics 2020. Wageningen: Wageningen Food & Biobased Research, 2020.
  62. Kurka T. Application of the analytic hierarchy process to evaluate the regional sustainability of bioenergy developments. Energy 2013:62:393–402. https://doi.org/10.1016/j.energy.2013.09.053">https://doi.org/10.1016/j.energy.2013.09.053
  63. Pamucar D., Bozanic D., Kurtov D. Fuzzification of the Saaty’s scale and a presentation of the hybrid fuzzy AHPTOPSIS model: An example of the selection of a brigade artillery group firing position in a defensive operation. Vojnotehnicki Glasnik 2016:64(4):966–986. https://doi.org/10.5937/vojtehg64-9262">https://doi.org/10.5937/vojtehg64-9262
  64. Szybowski J., Kułakowski K., Prusak A. New inconsistency indicators for incomplete pairwise comparisons matrices. Math Soc Sci 2020:108:138–145. https://doi.org/10.1016/j.mathsocsci.2020.05.002">https://doi.org/10.1016/j.mathsocsci.2020.05.002
  65. Ahmed S., Vedagiri P., KrishnaRao K. V. Prioritization of pavement maintenance sections using objective based Analytic Hierarchy Process. Int J Pav Res Tech 2017:10(2):158–170. https://doi.org/10.1016/j.ijprt.2017.01.001">https://doi.org/10.1016/j.ijprt.2017.01.001
  66. Laininen P., Hämäläinen R. P. Analyzing AHP-matrices by regression. Eur J Oper Res 2003:148(3):514–524. https://doi.org/10.1016/S0377-2217(02)00430-7">https://doi.org/10.1016/S0377-2217(02)00430-7
  67. Sahabuddin M., Khan I. Multi-criteria decision analysis methods for energy sector’s sustainability assessment: Robustness analysis through criteria weight change. Sustainable Energy Tech Assessments 2021:47:101380. https://doi.org/10.1016/j.seta.2021.101380">https://doi.org/10.1016/j.seta.2021.101380
  68. Dymova L., Sevastjanov P., Tikhonenko A. A direct interval extension of TOPSIS method. Expert Syst Appl 2013:40(12):4841–4847. https://doi.org/10.1016/j.eswa.2013.02.022">https://doi.org/10.1016/j.eswa.2013.02.022
  69. Gadakh V. S. Application of MOORA method for parametric optimization of milling process. Int J Appl Eng Res 2011:1(4):743–758.
  70. Thakkar J. J. Complex Proportion Assessment Method (COPRAS). Mul-Crit Dec Mak 2021:336:219–237. https://doi.org/10.1007/978-981-33-4745-8_13">https://doi.org/10.1007/978-981-33-4745-8_13
  71. Sayadi M. K., Heydari M., Shahanaghi K. Extension of VIKOR method for decision making problem with interval numbers. Appl Math Model 2009:33(5):2257–2262. https://doi.org/10.1016/j.apm.2008.06.002">https://doi.org/10.1016/j.apm.2008.06.002
  72. Zlaugotne B., et al. Multi-Criteria Decision Analysis Methods Comparison. Env Clim Tech 2020:24(1):454–471. https://doi.org/10.2478/rtuect-2020-0028">https://doi.org/10.2478/rtuect-2020-0028
  73. French S., Roy B. Multi-criteria Methodology for Decision Aiding. J Oper Res Soc 1997:48(12):1257–1258. https://doi.org/10.2307/3010757">https://doi.org/10.2307/3010757
  74. Chang Y. H., Yeh C. H., Chang Y. W. A new method selection approach for fuzzy group multi-criteria decision making. App S Comp J 2013:13(4):2179–2187. https://doi.org/10.1016/j.asoc.2012.12.009">https://doi.org/10.1016/j.asoc.2012.12.009
  75. Zanakis S. H., et al. Multi-attribute decision making: A simulation comparison of select methods. Eur J Oper Res 1998:107(3):507–529. https://doi.org/10.1016/S0377-2217(97)00147-1">https://doi.org/10.1016/S0377-2217(97)00147-1
  76. Ozcan T., Elebi N., Esnaf A. Comparative analysis of multi-criteria decision making methodologies and implementation of a warehouse location selection problem. Expert Syst Appl 2011:38(8):9773–9779. https://doi.org/10.1016/j.eswa.2011.02.022">https://doi.org/10.1016/j.eswa.2011.02.022
  77. Lakshmi T. M., Venkatesan V. P., Martin A. An Identification of Better Engineering College with Conflicting Criteria using Adaptive TOPSIS. Int J Mod Educ Comp Sc 2016:8(5):19–31. https://doi.org/10.5815/ijmecs.2016.05.03">https://doi.org/10.5815/ijmecs.2016.05.03
  78. Wątróbski J., et al. Generalised framework for multi-criteria method selection. Omega 2019:86:107–124. https://doi.org/10.1016/j.omega.2018.07.004">https://doi.org/10.1016/j.omega.2018.07.004
  79. Farah S., Anderson D. G., Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications. A comprehensive review. Adv Drug Deliv Rev 2016:107:367–392. https://doi.org/10.1016/j.addr.2016.06.012">https://doi.org/10.1016/j.addr.2016.06.012
  80. Nandakumar A., Chuah J. A., Sudesh K. Bioplastics: A boon or bane? Ren Sust En Rev 2021:147:111237. https://doi.org/10.1016/j.rser.2021.111237">https://doi.org/10.1016/j.rser.2021.111237
  81. Venkatachalam H., Palaniswamy R. Bioplastic World: A Review. J Adv Sci Res 2020:11(3):43–53. http://sciensage.info/index.php/JASR/article/view/505
  82. Ilyas R. A., et al. Polylactic acid (Pla) biocomposite: Processing, additive manufacturing and advanced applications. Polymers 2021:13(8):1326. https://doi.org/10.3390/polym13081326">https://doi.org/10.3390/polym13081326
  83. Sayyed R. Z., et al. Production of biodegradable polymer from agro-wastes in alcaligenes sp. and pseudomonas sp. Molecules 2021:26(9):2443. https://doi.org/10.3390/molecules26092443">https://doi.org/10.3390/molecules26092443
  84. Sharma V., Sehgal R., Gupta R. Polyhydroxyalkanoate (PHA): Properties and Modifications. Polymer 2021:212:123161. https://doi.org/10.1016/j.polymer.2020.123161">https://doi.org/10.1016/j.polymer.2020.123161
  85. Liu H., et al. Biopolymer poly-hydroxyalkanoates (PHA) production from apple industrial waste residues: A review. Chemosphere 2021:284:131427. https://doi.org/10.1016/j.chemosphere.2021.131427">https://doi.org/10.1016/j.chemosphere.2021.131427
  86. Birania S., et al. Advances in development of biodegradable food packaging material from agricultural and agroindustry waste. J Food Proc Eng 2022:45(1):e13930. https://doi.org/10.1111/jfpe.13930">https://doi.org/10.1111/jfpe.13930
  87. Nazrin A., et al. Nanocellulose Reinforced Thermoplastic Starch (TPS), Polylactic Acid (PLA), and Polybutylene Succinate (PBS) for Food Packaging Applications. Front Chem 2020:8:213. https://doi.org/10.3389/fchem.2020.00213">https://doi.org/10.3389/fchem.2020.00213
  88. Ranganathan S., et al. Utilization of food waste streams for the production of biopolymers. Heliyon 2020:6(9):e04891. https://doi.org/10.1016/j.heliyon.2020.e04891">https://doi.org/10.1016/j.heliyon.2020.e04891
  89. Motaung T. E., Linganiso L. Z. Critical review on agrowaste cellulose applications for biopolymers. Int J Plas Tech 2018:22:185–216. https://doi.org/10.1007/s12588-018-9219-6">https://doi.org/10.1007/s12588-018-9219-6
  90. Makarov I. S., et al. Structure, Morphology, and Permeability of Cellulose Films. Membranes 2022:12(3):297. https://doi.org/10.3390/membranes12030297">https://doi.org/10.3390/membranes12030297
DOI: https://doi.org/10.2478/rtuect-2023-0025 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 323 - 338
Submitted on: Jan 24, 2023
Accepted on: Jun 9, 2023
Published on: Jul 15, 2023
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2023 Nidhiben Patel, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.