Have a personal or library account? Click to login
Realizing Renewable Energy Storage Potential in Municipalities: Identifying the Factors that Matter Cover

Realizing Renewable Energy Storage Potential in Municipalities: Identifying the Factors that Matter

Open Access
|Jun 2023

References

  1. European Commission. Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions ‘Fit for 55’: delivering the EU’s 2030 Climate Target on the way to climate neutrality. Brussels: EC, 2021.
  2. European Commission. Renewable energy targets. [Online]. [Accessed: 30.03.2023]. Available: https://energy.ec.europa.eu/topics/renewable-energy/renewable-energy-directive-targets-and-rules/renewable-energy-targets_en
  3. European Commission. Mainstreaming RES: flexibility portfolios: design of flexibility portfolios at Member State level to facilitate a cost-efficient integration of high shares of renewables. Brussels: Publications Office of the European Union, 2017.
  4. Bolwig S., et al. Review of modelling energy transitions pathways with application to energy system flexibility. Renew. Sustain. Energy Rev. 2019:101:440–452. https://doi.org/10.1016/j.rser.2018.11.019
  5. European Commission. Communication from the commission to the European parliament, the European council, the council, the European economic and social committee, the committee of the regions and the European investment bank. A Clean Planet for all. A European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy. Brussels: EC, 2018.
  6. European Commission. Energy storage. [Online]. Available: https://energy.ec.europa.eu/topics/research-and-technology/energy-storage_en
  7. IRENA. Rise of renewables in cities – Energy solutions for the urban future. Abu Dhabi: IRENA, 2020.
  8. IRENA. Renewable energy policies for cities: Power sector. Abu Dhabi: IRENA, 2021.
  9. Achinas S., et al. A PESTLE Analysis of Biofuels Energy Industry in Europe. Sustainability 2019:11(21). https://doi.org/10.3390/su11215981
  10. Demirtas O., et al. Which renewable energy consumption is more efficient by fuzzy EDAS method based on PESTLE dimensions? Environ. Sci. Pollut. Res. 2021:28(27):36274–36287. https://doi.org/10.1007/s11356-021-13310-0
  11. Kansongue N., Njuguna J., Vertigans S. A PESTEL and SWOT impact analysis on renewable energy development in Togo. Front. Sustain. 2023:3(990173). https://doi.org/10.3389/frsus.2022.990173
  12. Song J., Sun Y., Jin L. PESTEL analysis of the development of the waste-to-energy incineration industry in China. Renew. Sustain. Energy Rev. 2017:80:276–289. https://doi.org/10.1016/j.rser.2017.05.066
  13. Valencia G. E., Cardenas Y. D., Acevedo C. H. PEST analysis of wind energy in the world: From the worldwide boom to the emergent in Colombia. J. Phys. Conf. Ser. 2018:1126:012019. https://doi.org/10.1088/1742-6596/1126/1/012019
  14. Zoričić D., et al. Integrated Risk Analysis of Aggregators: Policy Implications for the Development of the Competitive Aggregator Industry. Energies 2022:15(14). https://doi.org/10.3390/en15145076
  15. Jasper F. B., et al. Life cycle assessment (LCA) of a battery home storage system based on primary data. J. Clean. Prod. 2022:366:132899. https://doi.org/10.1016/j.jclepro.2022.132899
  16. Nowotny J., Veziroglu T. N. Impact of hydrogen on the environment. Int. J. Hydrog. Energy 2011:36(20):13218–13224. https://doi.org/10.1016/j.ijhydene.2011.07.071
  17. Thaker S., et al. Evaluating energy and greenhouse gas emission footprints of thermal energy storage systems for concentrated solar power applications. J. Energy Storage 2019:26:100992. https://doi.org/10.1016/j.est.2019.100992
  18. Chakraborty M. R., et al. A Comparative Review on Energy Storage Systems and Their Application in Deregulated Systems. Batteries 2022:8(9):124. https://doi.org/10.3390/batteries8090124
  19. Behabtu H. A., et al. A Review of Energy Storage Technologies. Application Potentials in Renewable Energy Sources Grid Integration. Sustainability 2020:12(24):10511. https://doi.org/10.3390/su122410511
  20. European Commission. Database of the European energy storage technologies and facilities – Data Europa EU. [Online]. [Accessed: 30.03.2023]. Available: https://data.europa.eu/data/datasets/database-of-the-european-energy-storage-technologies-and-facilities?locale=en
  21. Danish Energy Agency. Technology Data for Energy Storage. 2018 [Online]. [Accessed: 30.03.2023]. Available: https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-energy-storage
  22. IRENA. Innovation outlook: Thermal energy storage. Abu Dhabi: IRENA, 2020.
  23. IRENA. Electricity storage and renewables: Costs and markets to 2030. Abu Dhabi: IRENA, 2020.
  24. European Association for Storage of Energy. Energy Storage Technologies [Online]. [Accessed: 30.03.2023]. Available: https://ease-storage.eu/energy-storage/technologies/
  25. European Biogas Association. Beyond energy – monetising biomethane’s whole-system benefits. 2023 [Online]. [Accessed: 30.03.2023]. Available: https://www.europeanbiogas.eu/beyond-energy-onetising-biomethanes-whole-system-benefits/
  26. European Association for Storage of Energy, Energy Storage Policy Developments in 2022. [Online]. [Accessed: 30.03.2023]. Available: https://ease-storage.eu/news/energy-storage-policy-developments-in-2022/
  27. European Commission. ENTEC Storage report – annexes. 2022 [Online]. [Accessed: 30.03.2023]. Available: https://energy.ec.europa.eu/publications/entec-storage-report-annexes_en
  28. Dolge K., et al. Towards Industrial Energy Efficiency Index. Environ. Clim. Technol. 2020:24(1):419–430. https://doi.org/10.2478/rtuect-2020-0025
  29. Madurai Elavarasan R., et al. A novel Sustainable Development Goal 7 composite index as the paradigm for energy sustainability assessment: A case study from Europe. Appl. Energy 2022:307:118173. https://doi.org/10.1016/j.apenergy.2021.118173
  30. Armin Razmjoo A., Sumper A., Davarpanah A. Development of sustainable energy indexes by the utilization of new indicators: A comparative study. Energy Rep. 2019:5:375–383. https://doi.org/10.1016/j.egyr.2019.03.006
  31. Liang T., et al. Thermodynamic Analysis of Liquid Air Energy Storage (LAES) System. Encyclopedia of Energy Storage. Oxford: Elsevier, 2022:232–252. https://doi.org/10.1016/B978-0-12-819723-3.00128-1
  32. Georgious R., et al. Review on Energy Storage Systems in Microgrids. Electronics 2021:10(17):2134. https://doi.org/10.3390/electronics10172134
  33. Maia L. K. K., et al. Expanding the lifetime of Li-ion batteries through optimization of charging profiles. J. Clean. Prod. 2019:225:928–938. https://doi.org/10.1016/j.jclepro.2019.04.031
  34. Arshad F., et al. Life Cycle Assessment of Lithium-ion Batteries: A Critical Review. Resour. Conserv. Recycl. 2022:180:106164. https://doi.org/10.1016/j.resconrec.2022.106164
  35. Bakkaloglu S., Cooper J., Hawkes A. Methane emissions along biomethane and biogas supply chains are underestimated. One Earth 2022:5(6):724–736. https://doi.org/10.1016/j.oneear.2022.05.012
  36. Osman A. I., et al. Hydrogen production, storage, utilisation and environmental impacts: a review. Environ. Chem. Lett. 2022:20(1):153–188. https://doi.org/10.1007/s10311-021-01322-8
DOI: https://doi.org/10.2478/rtuect-2023-0021 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 271 - 288
Submitted on: Mar 31, 2023
Accepted on: Jun 9, 2023
Published on: Jun 29, 2023
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2023 Kristiāna Dolge, Annija Sintija Toma, Armands Grāvelsiņš, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.