References
- Jelić A. et al. Determination of Mechanical Properties of Epoxy Composite Materials Reinforced with Silicate Nanofillers Using Digital Image Correlation (DIC). Polymers 2022:14(6):1255. https://doi.org/10.3390/polym14061255
- Atmakuri A., Palevicius A., Kolli L., Vilkauskas A., Janusas G., Puglia D. Development and Analysis of Mechanical Properties of Caryota and Sisal Natural Fibers Reinforced Epoxy Hybrid Composites. Polymers 2021:13(6):864. https://doi.org/10.3390/polym13060864
- Korolev A., Mishnev M., Zherebtsov D., Vatin N. I., Karelina M., Arjmand M. Polymers under Load and Heating Deformability: Modelling and Predicting. Polymers 2021:13(3):428. https://doi.org/10.3390/polym13030428
- Zhang W., et al. Core-Shell Graphitic Carbon Nitride/Zinc Phytate as a Novel Efficient Flame Retardant for Fire Safety and Smoke Suppression in Epoxy Resin. Polymers 2020:12(1):212. https://doi.org/10.3390/polym12010212
- Rodríguez-Uicab O., Abot J. L., Avilés F. Electrical Resistance Sensing of Epoxy Curing Using an Embedded Carbon Nanotube Yarn. Sensors 2020:20(11):3230. https://doi.org/10.3390/s20113230
- Formela K., et al. Sound Insulation Properties of Hollow Polystyrene Spheres/Polyethylene Glycol/Epoxy Composites. Polymers 2022:14(7):1388. https://doi.org/10.3390/polym14071388
- Sukanto H., Raharjo W. W., Ariawan D., Triyono J., Kaavesina M. Epoxy resins thermosetting for mechanical engineering. Open Eng. 2021:11(1):797–814. https://doi.org/10.1515/eng-2021-0078
- Van Fan Y., Lee C. T., Lim J. S., Klemeš J. J., Le P. T. K. Cross-disciplinary approaches towards smart, resilient and sustainable circular economy. J. Clean. Prod. 2019:232:1482–1491. https://doi.org/10.1016/j.jclepro.2019.05.266
- Liu S., Chevali V. S., Xu Z., Hui D., Wang H. A review of extending performance of epoxy resins using carbon nanomaterials. Compos. Part B Eng. 2018:136:197–214. https://doi.org/10.1016/j.compositesb.2017.08.020
- Di Mauro C., Malburet S., Genua A., Graillot A., Mija A. Sustainable Series of New Epoxidized Vegetable Oil-Based Thermosets with Chemical Recycling Properties. Biomacromolecules 2020:21(9):3923–3935. https://doi.org/10.1021/acs.biomac.0c01059
- Zhao X. L., Liu Y. Y., Weng Y., Li Y. D., Zeng J. B. Sustainable Epoxy Vitrimers from Epoxidized Soybean Oil and Vanillin. ACS Sustain. Chem. Eng. 2020:8(39):15020–15029. https://doi.org/10.1021/acssuschemeng.0c05727
- Auvergne R., Caillol S., David G., Boutevin B., Pascault J. P. Biobased thermosetting epoxy: Present and future. Chem. Rev. 2014:114(2):1082–1115. https://doi.org/10.1021/cr3001274
- Ding C., Matharu A. S. Recent developments on biobased curing agents: A review of their preparation and use. ACS Sustain. Chem. Eng. 2014:2(10):2217–2236. https://doi.org/10.1021/sc500478f
- Shanmugam V., et al. Circular economy in biocomposite development: State-of-the-art, challenges and emerging trends. Compos. Part C Open Access 2021:5:100138. https://doi.org/10.1016/j.jcomc.2021.100138
- Spalvins K., Blumberga D. Single cell oil production from waste biomass: Review of applicable agricultural byproducts. Agron. Res. 2019:17(3):833–849. https://doi.org/10.15159/ar.19.039
- Jin F. L., Li X., Park S. J. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 2015:29:1–11. https://doi.org/10.1016/j.jiec.2015.03.026
- Negrell C., Cornille A., Andrade Nascimento de P., Robin J. J., Caillol S. New bio-based epoxy materials and foams from microalgal oil. Eur. J. Lipid Sci. Technol. 2017:119(4):1600214. https://doi.org/10.1002/ejlt.201600214
- Uglea C. V., Negulescu I. I. Synthesis and characterization of oligomers. CRC Press, 1991.
- Fiege H., et al. Phenol Derivatives. Ullmann’s Encycl. Ind. Chem. 2000. https://doi.org/10.1002/14356007.a19_313
- MacKay H., Abizaid A. A plurality of molecular targets: The receptor ecosystem for bisphenol-A (BPA). Horm. Behav. 2018:101:59–67. https://doi.org/10.1016/j.yhbeh.2017.11.001
- O’Connor J. C., Chapin R. E. Critical evaluation of observed adverse effects of endocrine active substances on reproduction and development, the immune system, and the nervous system. Pure Appl. Chem. 2003:75(11–12):2099–2123. https://doi.org/10.1351/pac200375112099
- Okada H., Tokunaga T., Liu X., Takayanagi S., Matsushima A., Shimohigashi Y. Direct evidence revealing structural elements essential for the high binding ability of bisphenol a to human estrogen-related receptor-γ. Environ. Health Perspect. 2008:116(1):32–38. https://doi.org/10.1289/ehp.10587
- vom Saal F. S., Hughes C. An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment. Environ. Health Perspect. 2005:113(8):926–933. https://doi.org/10.1289/ehp.7713
- Ertl J. Fully bio-based epoxy resins. Alma Mater Studiorum Università di Bologna, 2015.
- DOW Epichlorohydrin Product Stewardship Manual Safe Handling and Storage English. Epoxy. Chemical Compounds. DC, 2007.
- CDC – NIOSH Pocket Guide to Chemical Hazards-Epichlorohydrin. [Online]. [Accessed: 15.07.2022]. Available: https://www.cdc.gov/niosh/npg/npgd0254.html
- Ayushi Choudhary E. P. Allied Market Research, Epoxy Resin Market forecast 2020–2027. AMR, 2020.
- Frankowski R., Zgoła-Grześkowiak A., Grześkowiak T., Sójka K. The presence of bisphenol A in the thermal paper in the face of changing European regulations – A comparative global research. Environ. Pollut. 2020:265:114879. https://doi.org/10.1016/j.envpol.2020.114879
- Meier M. A. R., Metzger J. O., Schubert U. S. Plant oil renewable resources as green alternatives in polymer science. Chem. Soc. Rev. 2007:36(11):1788–1802. https://doi.org/10.1039/b703294c
- Kim J. R., Sharma S. The development and comparison of bio-thermoset plastics from epoxidized plant oils. Ind. Crops Prod. 2012:36(1):485–499. https://doi.org/10.1016/j.indcrop.2011.10.036
- Pawar M., Kadam A., Yemul O., Thamke V., Kodam K. Biodegradable bioepoxy resins based on epoxidized natural oil (cottonseed & algae) cured with citric and tartaric acids through solution polymerization: A renewable approach. Ind. Crops Prod. 2016:89:434–447. https://doi.org/10.1016/j.indcrop.2016.05.025
- Allasia M., et al. New insights into the properties of alkali-degradable thermosets based on epoxidized soy oil and plant-derived dicarboxylic acids. Polymer (Guildf). 2021:232:124143. https://doi.org/10.1016/j.polymer.2021.124143
- Petrović Z. S., Hong J., Lovrić Vuković M., Djonlagić J. Epoxy resins and composites from epoxidized linseed oil copolymers with cyclohexene oxide. Biocatal. Agric. Biotechnol. 2022:39:102269. https://doi.org/10.1016/j.bcab.2021.102269
- Todorovic A., Blößl Y., Oreski G., Resch-Fauster K. High-performance composite with 100% bio-based carbon content produced from epoxidized linseed oil, citric acid and flax fiber reinforcement. Compos. Part A Appl. Sci. Manuf. 2022:152:106666. https://doi.org/10.1016/j.compositesa.2021.106666
- Chen Y., Xi Z., Zhao L. New bio-based polymeric thermosets synthesized by ring-opening polymerization of epoxidized soybean oil with a green curing agent. Eur. Polym. J. 2016:84:435–447. https://doi.org/10.1016/j.eurpolymj.2016.08.038
- Huang X., Yang X., Liu H., Shang S., Cai Z., Wu K. Bio-based thermosetting epoxy foams from epoxidized soybean oil and rosin with enhanced properties. Ind. Crops Prod. 2019:139:111540. https://doi.org/10.1016/j.indcrop.2019.111540
- Gobin M., Loulergue P., Audic J. L., Lemiègre L. Synthesis and characterisation of bio-based polyester materials from vegetable oil and short to long chain dicarboxylic acids. Ind. Crops Prod. 2015:70:213–220. https://doi.org/10.1016/j.indcrop.2015.03.041
- Uprety B. K., Reddy J. V., Dalli S. S., Rakshit S. K. Utilization of microbial oil obtained from crude glycerol for the production of polyol and its subsequent conversion to polyurethane foams. Bioresour. Technol. 2017:235:309–315. https://doi.org/10.1016/j.biortech.2017.03.126
- Pawar M. S., Kadam A. S., Dawane B. S., Yemul O. S. Synthesis and characterization of rigid polyurethane foams from algae oil using biobased chain extenders. Polym. Bull. 2015:73(3):727–741. https://doi.org/10.1007/s00289-015-1514-1
- Petrović Z. S., et al. Polyols and Polyurethanes from Crude Algal Oil. J. Am. Oil Chem. Soc. 2013:90(7):1073–1078. https://doi.org/10.1007/s11746-013-2245-9
- Arbenz A., Perrin R., Avérous L. Elaboration and Properties of Innovative Biobased PUIR Foams from Microalgae. J. Polym. Environ. 2017:26(1):254–262. https://doi.org/10.1007/s10924-017-0948-y
- Radojčić D., Hong J., Ionescu M., Wan X., Javni I., Petrović Z. S. Study on the reaction of amines with internal epoxides. Eur. J. Lipid Sci. Technol. 2016:118(10):1507–1511. https://doi.org/10.1002/ejlt.201500490
- Roy Chong J. W., et al. Microalgae-based bioplastics: Future solution towards mitigation of plastic wastes. Environ. Res. 2022:206:112620. https://doi.org/10.1016/j.envres.2021.112620
- Qi Y., et al. Facile synthesis of bio-based tetra-functional epoxy resin and its potential application as high-performance composite resin matrix. Compos. Part B Eng. 2021:214:108749. https://doi.org/10.1016/j.compositesb.2021.108749
- Hidalgo P., Álvarez S., Hunter R., Sánchez A. Epoxidation of Fatty Acid Methyl Esters Derived from Algae Biomass to Develop Sustainable Bio-Based Epoxy Resins. Polymers 2020:12(10):2313. https://doi.org/10.3390/polym12102313
- Ortiz P., Vendamme R., Eevers W. Fully Biobased Epoxy Resins from Fatty Acids and Lignin. Molecules 2020:25(5):1158. https://doi.org/10.3390/molecules25051158
- Bunekar N., Tsai T. Y. Chapter 4-Bio-based nanomaterials for properties and applications. Bio-Based Nanomater. Synth. Protoc. Mech. Appl. 2022:67–72. https://doi.org/10.1016/B978-0-323-85148-0.00001-4
- Hottle T. A., Bilec M. M., Landis A. E. Sustainability assessments of bio-based polymers. Polym. Degrad. Stab. 2013:98(9):1898–1907. https://doi.org/10.1016/j.polymdegradstab.2013.06.016
- Sala S., Reale F., Cristóbal-García J., Marelli L., Rana P. Life cycle assessment for the impact assessment of policies. Life thinking and assessment in the European policies and for evaluating policy options. Jt. Res. Cent. 2016:28380:53. https://doi.org/10.2788/318544
- Arias A., González-García S., González-Rodríguez S., Feijoo G., Moreira M. T. Cradle-to-gate Life Cycle Assessment of bio-adhesives for the wood panel industry. A comparison with petrochemical alternatives. Sci. Total Environ. 2020:738:140357. https://doi.org/10.1016/j.scitotenv.2020.140357
- Beckstrom B. D., Wilson M. H., Crocker M., Quinn J. C. Bioplastic feedstock production from microalgae with fuel co-products: A techno-economic and life cycle impact assessment. Algal Res. 2020:46:101769. https://doi.org/10.1016/j.algal.2019.101769
- Carroccio S. C., Scarfato P., Bruno E., Aprea P., Dintcheva N. T., Filippone G. Impact of nanoparticles on the environmental sustainability of polymer nanocomposites based on bioplastics or recycled plastics – A review of life-cycle assessment studies. J. Clean. Prod. 2022:335:130322. https://doi.org/10.1016/j.jclepro.2021.130322
- Venkata Subhash G., et al. Challenges in microalgal biofuel production: A perspective on techno economic feasibility under biorefinery stratagem. Bioresour. Technol. 2022:343:126155. https://doi.org/10.1016/j.biortech.2021.126155
- Chia S. R., Nomanbhay S. B. H. M., Chew K. W., Munawaroh H. S. H., Shamsuddin A. H., Show P. L. Algae as potential feedstock for various bioenergy production. Chemosphere 2022:287:131944. https://doi.org/10.1016/j.chemosphere.2021.131944
- Guenka Scarcelli P., et al. Integration of algae-based sewage treatment with anaerobic digestion of the bacterial-algal biomass and biogas upgrading. Bioresour. Technol. 2021:340:125552. https://doi.org/10.1016/j.biortech.2021.125552
- Kowthaman C. N., Arul Mozhi Selvan V., Senthil Kumar P. Optimization strategies of alkaline thermo-chemical pretreatment for the enhance ment of biogas production from de-oiled algae. Fuel 2021:303:121242. https://doi.org/10.1016/j.fuel.2021.121242
- Assacute L., Romagnoli F., Cappelli A., Ciocci C. Algae-based biorefinery concept: an LCI analysis for a theoretical plant. Energy Procedia 2018:147:15–24. https://doi.org/10.1016/j.egypro.2018.07.028
- Kowthaman C. N., Arul Mozhi Selvan V. Waste to green fuels: Kinetic study of low lipid waste algae for energy development. Bioresour. Technol. Reports 2020:11:100510. https://doi.org/10.1016/j.biteb.2020.100510
- Pastare L., Romagnoli F., Blumberga D. Comparison of biomethane potential lab tests for Latvian locally available algae. Energy Procedia 2018:147:277–281. https://doi.org/10.1016/j.egypro.2018.07.092
- Karimian A., Mahdavi M. A., Gheshlaghi R. Algal cultivation strategies for enhancing production of Chlorella sorokiniana IG-W-96 biomass and bioproducts. Algal Res. 2022:62:102630. https://doi.org/10.1016/j.algal.2022.102630
- Stemmelen M., Pessel F., Lapinte V., Caillol S., Habas J. P., Robin J. J. A fully biobased epoxy resin from vegetable oils: From the synthesis of the precursors by thiol-ene reaction to the study of the final material. J. Polym. Sci. Part A Polym. Chem. 2011:49(11):2434–2444. https://doi.org/10.1002/pola.24674
- Doǧan E., Küsefoǧlu S. Synthesis and in situ foaming of biodegradable malonic acid ESO polymers. J. Appl. Polym. Sci. 2008:110(2):1129–1135. https://doi.org/10.1002/app.28708
- La Scala J., Wool R. P. Fundamental thermo-mechanical property modeling of triglyceride-based thermosetting resins. J. Appl. Polym. Sci. 2013:127(3):1812–1826. https://doi.org/10.1002/app.37927
- Hultberg M., Jönsson H. L., Bergstrand K. J., Carlsson A. S. Impact of light quality on biomass production and fatty acid content in the microalga Chlorella vulgaris. Bioresour. Technol. 2014:159:465–467. https://doi.org/10.1016/j.biortech.2014.03.092
- Tan X. B., et al. Semi-continuous cultivation of Chlorella vulgaris using chicken compost as nutrients source: Growth optimization study and fatty acid composition analysis. Energy Convers. Manag. 2018:164:363–373. https://doi.org/10.1016/j.enconman.2018.03.020
- Ren L. J., Li J., Hu Y. W., Ji X. J., Huang H. Utilization of cane molasses for docosahexaenoic acid production by Schizochytrium sp. CCTCC M209059. Korean J. Chem. Eng. 2013:30(4):787–789. https://doi.org/10.1007/s11814-013-0020-0
- Park W. K., et al. Economical DHA (Docosahexaenoic acid) production from Aurantiochytrium sp. KRS101 using orange peel extract and low cost nitrogen sources. Algal Res. 2018:29:71–79. https://doi.org/10.1016/j.algal.2017.11.017
- Ledesma-Amaro R., Nicaud J. M. Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Prog. Lipid Res. 2016:61:40–50. https://doi.org/10.1016/j.plipres.2015.12.001
- Papanikolaou S., Chevalot I., Komaitis M., Aggelis G., Marc I. Kinetic profile of the cellular lipid composition in an oleaginous Yarrowia lipolytica capable of producing a cocoa-butter substitute from industrial fats. Antonie van Leeuwenhoek 2001:80(3):215–224. https://doi.org/10.1023/A:1013083211405
- Fakas S., Makri A., Mavromati M., Tselepi M., Aggelis G. Fatty acid composition in lipid fractions lengthwise the mycelium of Mortierella isabellina and lipid production by solid state fermentation. Bioresour. Technol. 2009:100(23):6118–6120. https://doi.org/10.1016/j.biortech.2009.06.015
- Vamvakaki A. N., Kandarakis I., Kaminarides S., Komaitis M., Papanikolaou S. Cheese whey as a renewable substrate for microbial lipid and biomass production by Zygomycetes. Eng. Life Sci. 2010:10(4):348–360. https://doi.org/10.1002/elsc.201000063
- Gouda M. K., Omar S. H., Aouad L. M. Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J. Microbiol. Biotechnol. 2008:24(9):1703–1711. https://doi.org/10.1007/s11274-008-9664-z
- Spalvins K., Vamza I., Blumberga D. Single Cell Oil Production from Waste Biomass: Review of Applicable Industrial By-Products. Environ. Clim. Technol. 2019:23(2):325–337. https://doi.org/10.2478/rtuect-2019-0071
- Spalvins K., Blumberga D. Production of Fish Feed and Fish Oil from Waste Biomass Using Microorganisms: Overview of Methods Analyzing Resource Availability. Environ. Clim. Technol. 2018:22(1):149–164. https://doi.org/10.2478/rtuect-2018-0010
- Roesle P., et al. Synthetic Polyester from Algae Oil. Angew. Chemie Int. Ed. 2014:53(26):6800–6804. https://doi.org/10.1002/anie.201403991
- Hidalgo P., Navia R., Hunter R., Gonzalez M. E., Echeverría A. Development of novel bio-based epoxides from microalgae Nannochloropsis gaditana lipids. Compos. Part B Eng. 2019:166:653–662. https://doi.org/10.1016/j.compositesb.2019.02.049
- Yang D., et al. Preparation and characterization of epoxidized microbial oil. Korean J. Chem. Eng. 2016:33(3):964–971. https://doi.org/10.1007/s11814-015-0216-6