Jelić A. et al. Determination of Mechanical Properties of Epoxy Composite Materials Reinforced with Silicate Nanofillers Using Digital Image Correlation (DIC). Polymers 2022:14(6):1255. https://doi.org/10.3390/polym14061255
Atmakuri A., Palevicius A., Kolli L., Vilkauskas A., Janusas G., Puglia D. Development and Analysis of Mechanical Properties of Caryota and Sisal Natural Fibers Reinforced Epoxy Hybrid Composites. Polymers 2021:13(6):864. https://doi.org/10.3390/polym13060864
Korolev A., Mishnev M., Zherebtsov D., Vatin N. I., Karelina M., Arjmand M. Polymers under Load and Heating Deformability: Modelling and Predicting. Polymers 2021:13(3):428. https://doi.org/10.3390/polym13030428
Zhang W., et al. Core-Shell Graphitic Carbon Nitride/Zinc Phytate as a Novel Efficient Flame Retardant for Fire Safety and Smoke Suppression in Epoxy Resin. Polymers 2020:12(1):212. https://doi.org/10.3390/polym12010212
Rodríguez-Uicab O., Abot J. L., Avilés F. Electrical Resistance Sensing of Epoxy Curing Using an Embedded Carbon Nanotube Yarn. Sensors 2020:20(11):3230. https://doi.org/10.3390/s20113230
Sukanto H., Raharjo W. W., Ariawan D., Triyono J., Kaavesina M. Epoxy resins thermosetting for mechanical engineering. Open Eng. 2021:11(1):797–814. https://doi.org/10.1515/eng-2021-0078
Van Fan Y., Lee C. T., Lim J. S., Klemeš J. J., Le P. T. K. Cross-disciplinary approaches towards smart, resilient and sustainable circular economy. J. Clean. Prod. 2019:232:1482–1491. https://doi.org/10.1016/j.jclepro.2019.05.266
Liu S., Chevali V. S., Xu Z., Hui D., Wang H. A review of extending performance of epoxy resins using carbon nanomaterials. Compos. Part B Eng. 2018:136:197–214. https://doi.org/10.1016/j.compositesb.2017.08.020
Di Mauro C., Malburet S., Genua A., Graillot A., Mija A. Sustainable Series of New Epoxidized Vegetable Oil-Based Thermosets with Chemical Recycling Properties. Biomacromolecules 2020:21(9):3923–3935. https://doi.org/10.1021/acs.biomac.0c01059
Zhao X. L., Liu Y. Y., Weng Y., Li Y. D., Zeng J. B. Sustainable Epoxy Vitrimers from Epoxidized Soybean Oil and Vanillin. ACS Sustain. Chem. Eng. 2020:8(39):15020–15029. https://doi.org/10.1021/acssuschemeng.0c05727
Auvergne R., Caillol S., David G., Boutevin B., Pascault J. P. Biobased thermosetting epoxy: Present and future. Chem. Rev. 2014:114(2):1082–1115. https://doi.org/10.1021/cr3001274
Ding C., Matharu A. S. Recent developments on biobased curing agents: A review of their preparation and use. ACS Sustain. Chem. Eng. 2014:2(10):2217–2236. https://doi.org/10.1021/sc500478f
Shanmugam V., et al. Circular economy in biocomposite development: State-of-the-art, challenges and emerging trends. Compos. Part C Open Access 2021:5:100138. https://doi.org/10.1016/j.jcomc.2021.100138
Spalvins K., Blumberga D. Single cell oil production from waste biomass: Review of applicable agricultural byproducts. Agron. Res. 2019:17(3):833–849. https://doi.org/10.15159/ar.19.039
Negrell C., Cornille A., Andrade Nascimento de P., Robin J. J., Caillol S. New bio-based epoxy materials and foams from microalgal oil. Eur. J. Lipid Sci. Technol. 2017:119(4):1600214. https://doi.org/10.1002/ejlt.201600214
MacKay H., Abizaid A. A plurality of molecular targets: The receptor ecosystem for bisphenol-A (BPA). Horm. Behav. 2018:101:59–67. https://doi.org/10.1016/j.yhbeh.2017.11.001
O’Connor J. C., Chapin R. E. Critical evaluation of observed adverse effects of endocrine active substances on reproduction and development, the immune system, and the nervous system. Pure Appl. Chem. 2003:75(11–12):2099–2123. https://doi.org/10.1351/pac200375112099
Okada H., Tokunaga T., Liu X., Takayanagi S., Matsushima A., Shimohigashi Y. Direct evidence revealing structural elements essential for the high binding ability of bisphenol a to human estrogen-related receptor-γ. Environ. Health Perspect. 2008:116(1):32–38. https://doi.org/10.1289/ehp.10587
vom Saal F. S., Hughes C. An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment. Environ. Health Perspect. 2005:113(8):926–933. https://doi.org/10.1289/ehp.7713
Frankowski R., Zgoła-Grześkowiak A., Grześkowiak T., Sójka K. The presence of bisphenol A in the thermal paper in the face of changing European regulations – A comparative global research. Environ. Pollut. 2020:265:114879. https://doi.org/10.1016/j.envpol.2020.114879
Meier M. A. R., Metzger J. O., Schubert U. S. Plant oil renewable resources as green alternatives in polymer science. Chem. Soc. Rev. 2007:36(11):1788–1802. https://doi.org/10.1039/b703294c
Kim J. R., Sharma S. The development and comparison of bio-thermoset plastics from epoxidized plant oils. Ind. Crops Prod. 2012:36(1):485–499. https://doi.org/10.1016/j.indcrop.2011.10.036
Pawar M., Kadam A., Yemul O., Thamke V., Kodam K. Biodegradable bioepoxy resins based on epoxidized natural oil (cottonseed & algae) cured with citric and tartaric acids through solution polymerization: A renewable approach. Ind. Crops Prod. 2016:89:434–447. https://doi.org/10.1016/j.indcrop.2016.05.025
Allasia M., et al. New insights into the properties of alkali-degradable thermosets based on epoxidized soy oil and plant-derived dicarboxylic acids. Polymer (Guildf). 2021:232:124143. https://doi.org/10.1016/j.polymer.2021.124143
Petrović Z. S., Hong J., Lovrić Vuković M., Djonlagić J. Epoxy resins and composites from epoxidized linseed oil copolymers with cyclohexene oxide. Biocatal. Agric. Biotechnol. 2022:39:102269. https://doi.org/10.1016/j.bcab.2021.102269
Todorovic A., Blößl Y., Oreski G., Resch-Fauster K. High-performance composite with 100% bio-based carbon content produced from epoxidized linseed oil, citric acid and flax fiber reinforcement. Compos. Part A Appl. Sci. Manuf. 2022:152:106666. https://doi.org/10.1016/j.compositesa.2021.106666
Chen Y., Xi Z., Zhao L. New bio-based polymeric thermosets synthesized by ring-opening polymerization of epoxidized soybean oil with a green curing agent. Eur. Polym. J. 2016:84:435–447. https://doi.org/10.1016/j.eurpolymj.2016.08.038
Huang X., Yang X., Liu H., Shang S., Cai Z., Wu K. Bio-based thermosetting epoxy foams from epoxidized soybean oil and rosin with enhanced properties. Ind. Crops Prod. 2019:139:111540. https://doi.org/10.1016/j.indcrop.2019.111540
Gobin M., Loulergue P., Audic J. L., Lemiègre L. Synthesis and characterisation of bio-based polyester materials from vegetable oil and short to long chain dicarboxylic acids. Ind. Crops Prod. 2015:70:213–220. https://doi.org/10.1016/j.indcrop.2015.03.041
Uprety B. K., Reddy J. V., Dalli S. S., Rakshit S. K. Utilization of microbial oil obtained from crude glycerol for the production of polyol and its subsequent conversion to polyurethane foams. Bioresour. Technol. 2017:235:309–315. https://doi.org/10.1016/j.biortech.2017.03.126
Pawar M. S., Kadam A. S., Dawane B. S., Yemul O. S. Synthesis and characterization of rigid polyurethane foams from algae oil using biobased chain extenders. Polym. Bull. 2015:73(3):727–741. https://doi.org/10.1007/s00289-015-1514-1
Arbenz A., Perrin R., Avérous L. Elaboration and Properties of Innovative Biobased PUIR Foams from Microalgae. J. Polym. Environ. 2017:26(1):254–262. https://doi.org/10.1007/s10924-017-0948-y
Radojčić D., Hong J., Ionescu M., Wan X., Javni I., Petrović Z. S. Study on the reaction of amines with internal epoxides. Eur. J. Lipid Sci. Technol. 2016:118(10):1507–1511. https://doi.org/10.1002/ejlt.201500490
Roy Chong J. W., et al. Microalgae-based bioplastics: Future solution towards mitigation of plastic wastes. Environ. Res. 2022:206:112620. https://doi.org/10.1016/j.envres.2021.112620
Qi Y., et al. Facile synthesis of bio-based tetra-functional epoxy resin and its potential application as high-performance composite resin matrix. Compos. Part B Eng. 2021:214:108749. https://doi.org/10.1016/j.compositesb.2021.108749
Bunekar N., Tsai T. Y. Chapter 4-Bio-based nanomaterials for properties and applications. Bio-Based Nanomater. Synth. Protoc. Mech. Appl. 2022:67–72. https://doi.org/10.1016/B978-0-323-85148-0.00001-4
Sala S., Reale F., Cristóbal-García J., Marelli L., Rana P. Life cycle assessment for the impact assessment of policies. Life thinking and assessment in the European policies and for evaluating policy options. Jt. Res. Cent. 2016:28380:53. https://doi.org/10.2788/318544
Arias A., González-García S., González-Rodríguez S., Feijoo G., Moreira M. T. Cradle-to-gate Life Cycle Assessment of bio-adhesives for the wood panel industry. A comparison with petrochemical alternatives. Sci. Total Environ. 2020:738:140357. https://doi.org/10.1016/j.scitotenv.2020.140357
Beckstrom B. D., Wilson M. H., Crocker M., Quinn J. C. Bioplastic feedstock production from microalgae with fuel co-products: A techno-economic and life cycle impact assessment. Algal Res. 2020:46:101769. https://doi.org/10.1016/j.algal.2019.101769
Carroccio S. C., Scarfato P., Bruno E., Aprea P., Dintcheva N. T., Filippone G. Impact of nanoparticles on the environmental sustainability of polymer nanocomposites based on bioplastics or recycled plastics – A review of life-cycle assessment studies. J. Clean. Prod. 2022:335:130322. https://doi.org/10.1016/j.jclepro.2021.130322
Venkata Subhash G., et al. Challenges in microalgal biofuel production: A perspective on techno economic feasibility under biorefinery stratagem. Bioresour. Technol. 2022:343:126155. https://doi.org/10.1016/j.biortech.2021.126155
Chia S. R., Nomanbhay S. B. H. M., Chew K. W., Munawaroh H. S. H., Shamsuddin A. H., Show P. L. Algae as potential feedstock for various bioenergy production. Chemosphere 2022:287:131944. https://doi.org/10.1016/j.chemosphere.2021.131944
Guenka Scarcelli P., et al. Integration of algae-based sewage treatment with anaerobic digestion of the bacterial-algal biomass and biogas upgrading. Bioresour. Technol. 2021:340:125552. https://doi.org/10.1016/j.biortech.2021.125552
Kowthaman C. N., Arul Mozhi Selvan V., Senthil Kumar P. Optimization strategies of alkaline thermo-chemical pretreatment for the enhance ment of biogas production from de-oiled algae. Fuel 2021:303:121242. https://doi.org/10.1016/j.fuel.2021.121242
Assacute L., Romagnoli F., Cappelli A., Ciocci C. Algae-based biorefinery concept: an LCI analysis for a theoretical plant. Energy Procedia 2018:147:15–24. https://doi.org/10.1016/j.egypro.2018.07.028
Kowthaman C. N., Arul Mozhi Selvan V. Waste to green fuels: Kinetic study of low lipid waste algae for energy development. Bioresour. Technol. Reports 2020:11:100510. https://doi.org/10.1016/j.biteb.2020.100510
Pastare L., Romagnoli F., Blumberga D. Comparison of biomethane potential lab tests for Latvian locally available algae. Energy Procedia 2018:147:277–281. https://doi.org/10.1016/j.egypro.2018.07.092
Karimian A., Mahdavi M. A., Gheshlaghi R. Algal cultivation strategies for enhancing production of Chlorella sorokiniana IG-W-96 biomass and bioproducts. Algal Res. 2022:62:102630. https://doi.org/10.1016/j.algal.2022.102630
Stemmelen M., Pessel F., Lapinte V., Caillol S., Habas J. P., Robin J. J. A fully biobased epoxy resin from vegetable oils: From the synthesis of the precursors by thiol-ene reaction to the study of the final material. J. Polym. Sci. Part A Polym. Chem. 2011:49(11):2434–2444. https://doi.org/10.1002/pola.24674
Doǧan E., Küsefoǧlu S. Synthesis and in situ foaming of biodegradable malonic acid ESO polymers. J. Appl. Polym. Sci. 2008:110(2):1129–1135. https://doi.org/10.1002/app.28708
La Scala J., Wool R. P. Fundamental thermo-mechanical property modeling of triglyceride-based thermosetting resins. J. Appl. Polym. Sci. 2013:127(3):1812–1826. https://doi.org/10.1002/app.37927
Hultberg M., Jönsson H. L., Bergstrand K. J., Carlsson A. S. Impact of light quality on biomass production and fatty acid content in the microalga Chlorella vulgaris. Bioresour. Technol. 2014:159:465–467. https://doi.org/10.1016/j.biortech.2014.03.092
Tan X. B., et al. Semi-continuous cultivation of Chlorella vulgaris using chicken compost as nutrients source: Growth optimization study and fatty acid composition analysis. Energy Convers. Manag. 2018:164:363–373. https://doi.org/10.1016/j.enconman.2018.03.020
Ren L. J., Li J., Hu Y. W., Ji X. J., Huang H. Utilization of cane molasses for docosahexaenoic acid production by Schizochytrium sp. CCTCC M209059. Korean J. Chem. Eng. 2013:30(4):787–789. https://doi.org/10.1007/s11814-013-0020-0
Park W. K., et al. Economical DHA (Docosahexaenoic acid) production from Aurantiochytrium sp. KRS101 using orange peel extract and low cost nitrogen sources. Algal Res. 2018:29:71–79. https://doi.org/10.1016/j.algal.2017.11.017
Ledesma-Amaro R., Nicaud J. M. Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Prog. Lipid Res. 2016:61:40–50. https://doi.org/10.1016/j.plipres.2015.12.001
Papanikolaou S., Chevalot I., Komaitis M., Aggelis G., Marc I. Kinetic profile of the cellular lipid composition in an oleaginous Yarrowia lipolytica capable of producing a cocoa-butter substitute from industrial fats. Antonie van Leeuwenhoek 2001:80(3):215–224. https://doi.org/10.1023/A:1013083211405
Fakas S., Makri A., Mavromati M., Tselepi M., Aggelis G. Fatty acid composition in lipid fractions lengthwise the mycelium of Mortierella isabellina and lipid production by solid state fermentation. Bioresour. Technol. 2009:100(23):6118–6120. https://doi.org/10.1016/j.biortech.2009.06.015
Vamvakaki A. N., Kandarakis I., Kaminarides S., Komaitis M., Papanikolaou S. Cheese whey as a renewable substrate for microbial lipid and biomass production by Zygomycetes. Eng. Life Sci. 2010:10(4):348–360. https://doi.org/10.1002/elsc.201000063
Gouda M. K., Omar S. H., Aouad L. M. Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J. Microbiol. Biotechnol. 2008:24(9):1703–1711. https://doi.org/10.1007/s11274-008-9664-z
Spalvins K., Vamza I., Blumberga D. Single Cell Oil Production from Waste Biomass: Review of Applicable Industrial By-Products. Environ. Clim. Technol. 2019:23(2):325–337. https://doi.org/10.2478/rtuect-2019-0071
Spalvins K., Blumberga D. Production of Fish Feed and Fish Oil from Waste Biomass Using Microorganisms: Overview of Methods Analyzing Resource Availability. Environ. Clim. Technol. 2018:22(1):149–164. https://doi.org/10.2478/rtuect-2018-0010
Hidalgo P., Navia R., Hunter R., Gonzalez M. E., Echeverría A. Development of novel bio-based epoxides from microalgae Nannochloropsis gaditana lipids. Compos. Part B Eng. 2019:166:653–662. https://doi.org/10.1016/j.compositesb.2019.02.049