Have a personal or library account? Click to login
Decision-making Algorithm for Waste Recovery Options. Review on Textile Waste Derived Products Cover

Decision-making Algorithm for Waste Recovery Options. Review on Textile Waste Derived Products

Open Access
|Feb 2023

References

  1. [1] Pilar López-Portillo M., Martínez-Jiménez G., Ropero-Moriones E., Concepción Saavedra-Serrano M., Waste treatments in the European Union: A comparative analysis across its member states. Helion 2021:7(12):e08645. https://doi.org/10.1016/j.heliyon.2021.e08645
  2. [2] Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 amending Directive 2008/98/EC on waste. Official Journal of the European Union. 2018: L 150/108. http://data.europa.eu/eli/dir/2018/851/oj Jäämaa L., Kaipia R. The first mile problem in the circular economy supply chains – Collecting recyclable textiles from consumers. Waste Management 2022:141:173–182. https://doi.org/10.1016/j.wasman.2022.01.012
  3. [3] Schmutz M., Som C. Identifying the potential for circularity of industrial textile waste generated within Swiss companies. Resources, Conservation and Recycling 2022:182:106132. Ribul M., Lanot A., Tommencioni Pisapia C., Purnell P., McQueen-Mason S. J., Baurley S. Mechanical, chemical, biological: Moving towards closed-loop bio-based recycling in a circular economy of sustainable textiles. Journal of Cleaner Production 2021:326:129325. https://doi.org/10.1016/j.jclepro.2021.129325
  4. [4] Kahoush M., Kadi N. Towards sustainable textile sector: Fractionation and separation of cotton/polyester fibers from blended textile waste. Sustainable Materials and technologies 2022:34:e00513.
  5. [5] Generation of waste by waste category, hazardousness and NACE Rev. 2 activity. [Online]. [Accessed 22.04.2022]. Available: https://ec.europa.eu/eurostat/databrowser/view/env_wasgen/default/table?lang=en
  6. [6] Ellen MacArthur Foundation, 2017. [Online]. [Accessed 07.04.2022]. Available: https://ellenmacarthurfoundation.org/a-new-textiles-economy
  7. [7] Yousef S., Tatariants M., Tichonovas M., Sarwar Z., Jonuškienė I., Kliucininkas L. A new strategy for using textile waste as a sustainable source of recovered cotton. Resources, Conservation and Recycling 2019:145:359–369. https://doi.org/10.1016/j.resconrec.2019.02.031
  8. [8] Yu I. K. M., Chen H., Abeln F., Auta H., Fan J., Budarin V. L., Clark J. H., Parsons S., Chuck C. J., Zhang S., Luo G., Tsang D. C. W. Chemicals from lignocellulosic biomass: a critical comparison between biochemical, microwave and thermochemical conversion methods. Critical Reviews in Environmental Science and Technology 2020:51(14):1479–1532. https://doi.org/10.1080/10643389.2020.1753632
  9. [9] Subramanian K., Chopra S. S., Cakin E., Li X., Sze Ki Lin K. Environmental life cycle assessment of textile bio-recycling – valorizing cotton-polyester textile waste to pet fiber and glucose syrup. Resources, Conservation and Recycling 2020:161:104989. https://doi.org/10.1016/j.resconrec.2020.104989
  10. [10] Roos, S., Sandin, G., Peters, G., Bjorn, S., Bour, G. S., Perzon, E., Jonson, C. White paper on textile recycling. Mistra Future Fashion, 2019.
  11. [11] Leal Filho W., Ellams D., Han S., Tyler D., Boiten V. J., Paço A., Moora H., Balogun A.-L. A review of the socioeconomic advantages of textile recycling. Journal of Cleaner Production 2019:218:10–20. https://doi.org/10.1016/j.jclepro.2019.01.210
  12. [12] Kunchimon S. Z., Tausif M., Goswami P., Cheung V. Polyamide 6 and thermoplastic polyurethane recycled hybrid Fibres via twin-screw melt extrusion. Journal of Polymer Research 2019:26:162. https://doi.org/10.1007/s10965-019-1827-0 Sherwood J. Closed-loop recycling of polymers using solvents: remaking plastics for a circular economy. Johnson Matthey Technology Review 2020:64(1):4–15. https://doi.org/10.1595/205651319X15574756736831
  13. [13] Ostlund Å., Wedin H., Bolin L., Berlin, J., Jonsson C., Posner S., Smuk L., Eriksson M., Sandin G. Textilåtervinning. Naturvårdsverket, 2015. Holea G., Hole A. Improving recycling of textiles based on lessons from policies for other recyclable materials. Sustainable Production and Consumption 2020:23:42–51. https://doi.org/10.1016/j.spc.2020.04.005
  14. [14] Biyada S., Merzouki M., Dėmčėnko T., Vasiliauskienė D., Urbonavičius J., Marčiulaitienė E., Vasarevičius S., Benlemlih M. Evolution of Microbial Composition and Enzymatic Activities during the Composting of Textile Waste. Applied Sciences 2020:10(11):3758. https://doi.org/10.3390/app10113758
  15. [15] Vázquez M.A., Soto M. The efficiency of home composting programmes and compost quality. Waste Management 2017:64:39–50. https://doi.org/10.1016/j.wasman.2017.03.022
  16. [16] Ozuysal A., Akinci G. The assessment of refuse derived fuel (RDF) production from textile waste. Eurasian Journal of Environmental Research 2019:3(2):27–32.
  17. [17] Hasanzadeh E., Mirmohamadsadeghi S., Karimi K. Enhancing energy production from waste textile by hydrolysis of synthetic parts. Fuel 2018:218:41–48. https://doi.org/10.1016/j.fuel.2018.01.035
  18. [18] Wang H., Kaur G., Pensupa N., Uisan K., Du C., Yang X., Sze Ki Lin C. Textile waste valorization using submerged filamentous fungal fermentation. Process Safety and Environmental Protection 2018:118:143–151. https://doi.org/10.1016/j.psep.2018.06.038 Asdrubali F., D’Alessandro F., Schiavoni S. A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies 2015:4:1–17. https://doi.org/10.1016/j.susmat.2015.05.002
  19. [19] UltraTouch™ Denim Insulation. [Online]. [Accessed 12.04.2022]. Available: http://www.bondedlogic.com/ultratouch-denim-insulation/
  20. [20] Briga-Sá A., Gaibor N., Magalhães L., Pinto T., Leitão D. Thermal performance characterization of cement-based lightweight blocks incorporating textile waste. Construction and Building Materials 2022:321:126330. https://doi.org/10.1016/j.conbuildmat.2022.126330
  21. [21] Palme A., Peterson A., de la Motte H., Theliander H., Brelid H. Development of an efficient route for combined recycling of PET and cotton from mixed fabrics. Textiles and Clothing Sustainability 2017:3:Art4. https://doi.org/10.1186/s40689-017-0026-9
  22. [22] Köksalan M., Wallenius J., Zionts S. An Early History of Multiple Criteria Decision Making. Journal of Multi-Criteria Decision Analysis 2013:20:87–94. https://doi.org/10.1002/mcda.1481
  23. [23] Vamza I., Valters K., Blumberga D. Multi-Criteria Analysis of Lignocellulose Substrate Pre-Treatment. Environmental and Climate Technologies 2020:24(3):483–492. https://doi.org/10.2478/rtuect-2020-0118
  24. [24] Zlaugotne B., Zihare L., Balode L., Kalnbalkite A., Khabdullin A., Blumberga D. Multi-Criteria Decision Analysis Methods Comparison. Environmental and Climate Technologies 2020:24(1):454–471. https://doi.org/10.2478/rtuect-2020-0028
  25. [25] Vanaga R., Blumberga A., Gusca J., Blumberga B. Choosing the best nature’s strategy with the highest thermodynamic potential for application in building thermal envelope using MCA analysis. Energy Procedia 2018:152:450–455. https://doi.org/10.1016/j.egypro.2018.09.252
  26. [26] Rozentale L., Blumberga D. Cost-Benefit and Multi-Criteria Analysis of Wind Energy Parks Development Potential in Latvia. Environmental and Climate Technologies 2021:25(1):1229–1240. https://doi.org/10.2478/rtuect-2021-0093
  27. [27] Adem Esmail B., Geneletti D. Multi-criteria decision analysis for nature conservation: A review of 20 years of applications. Methods in Ecology and Evolution 2018:9(1):42–53. https://doi.org/10.1111/2041-210X.12899
  28. [28] Saaty T. L. Deriving the AHP 1-9 scale from first principles. Proc. 6th ISAHP, 2001. https://doi.org/10.13033/isahp.y2001.030
  29. [29] A Zero Waste hierarchy for Europe [Online]. [Accessed 12.04.2022]. Available: https://zerowasteeurope.eu/2019/05/a-zero-waste-hierarchy-for-europe/ Stegmann P., Londo M., Junginger M. The circular bioeconomy: Its elements and role in European bioeconomy cluster. Resources, Conservation & Recycling 2020:6:100029. https://doi.org/10.1016/j.rcrx.2019.100029
  30. [30] ETC/WMGE Report 1/2021: Plastic in textiles: potentials for circularity and reduced environmental and climate impacts [Online]. [Accessed 11.02.2022]. Available: https://www.eionet.europa.eu/etcs/etc-wmge/products/etcwmge-reports/plastic-in-textiles-potentials-for-circularity-and-reduced-environmental-and-climate-impacts
DOI: https://doi.org/10.2478/rtuect-2023-0011 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 137 - 149
Submitted on: Jun 22, 2022
Accepted on: Feb 2, 2023
Published on: Feb 15, 2023
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2023 Anda Zandberga, Silvija Nora Kalnins, Julija Gusca, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.