[1] Pilar López-Portillo M., Martínez-Jiménez G., Ropero-Moriones E., Concepción Saavedra-Serrano M., Waste treatments in the European Union: A comparative analysis across its member states. Helion 2021:7(12):e08645. https://doi.org/10.1016/j.heliyon.2021.e08645
[2] Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 amending Directive 2008/98/EC on waste. Official Journal of the European Union. 2018: L 150/108. http://data.europa.eu/eli/dir/2018/851/oj Jäämaa L., Kaipia R. The first mile problem in the circular economy supply chains – Collecting recyclable textiles from consumers. Waste Management 2022:141:173–182. https://doi.org/10.1016/j.wasman.2022.01.012
[3] Schmutz M., Som C. Identifying the potential for circularity of industrial textile waste generated within Swiss companies. Resources, Conservation and Recycling 2022:182:106132. Ribul M., Lanot A., Tommencioni Pisapia C., Purnell P., McQueen-Mason S. J., Baurley S. Mechanical, chemical, biological: Moving towards closed-loop bio-based recycling in a circular economy of sustainable textiles. Journal of Cleaner Production 2021:326:129325. https://doi.org/10.1016/j.jclepro.2021.129325
[4] Kahoush M., Kadi N. Towards sustainable textile sector: Fractionation and separation of cotton/polyester fibers from blended textile waste. Sustainable Materials and technologies 2022:34:e00513.
[7] Yousef S., Tatariants M., Tichonovas M., Sarwar Z., Jonuškienė I., Kliucininkas L. A new strategy for using textile waste as a sustainable source of recovered cotton. Resources, Conservation and Recycling 2019:145:359–369. https://doi.org/10.1016/j.resconrec.2019.02.031
[8] Yu I. K. M., Chen H., Abeln F., Auta H., Fan J., Budarin V. L., Clark J. H., Parsons S., Chuck C. J., Zhang S., Luo G., Tsang D. C. W. Chemicals from lignocellulosic biomass: a critical comparison between biochemical, microwave and thermochemical conversion methods. Critical Reviews in Environmental Science and Technology 2020:51(14):1479–1532. https://doi.org/10.1080/10643389.2020.1753632
[9] Subramanian K., Chopra S. S., Cakin E., Li X., Sze Ki Lin K. Environmental life cycle assessment of textile bio-recycling – valorizing cotton-polyester textile waste to pet fiber and glucose syrup. Resources, Conservation and Recycling 2020:161:104989. https://doi.org/10.1016/j.resconrec.2020.104989
[11] Leal Filho W., Ellams D., Han S., Tyler D., Boiten V. J., Paço A., Moora H., Balogun A.-L. A review of the socioeconomic advantages of textile recycling. Journal of Cleaner Production 2019:218:10–20. https://doi.org/10.1016/j.jclepro.2019.01.210
[12] Kunchimon S. Z., Tausif M., Goswami P., Cheung V. Polyamide 6 and thermoplastic polyurethane recycled hybrid Fibres via twin-screw melt extrusion. Journal of Polymer Research 2019:26:162. https://doi.org/10.1007/s10965-019-1827-0 Sherwood J. Closed-loop recycling of polymers using solvents: remaking plastics for a circular economy. Johnson Matthey Technology Review 2020:64(1):4–15. https://doi.org/10.1595/205651319X15574756736831
[13] Ostlund Å., Wedin H., Bolin L., Berlin, J., Jonsson C., Posner S., Smuk L., Eriksson M., Sandin G. Textilåtervinning. Naturvårdsverket, 2015. Holea G., Hole A. Improving recycling of textiles based on lessons from policies for other recyclable materials. Sustainable Production and Consumption 2020:23:42–51. https://doi.org/10.1016/j.spc.2020.04.005
[14] Biyada S., Merzouki M., Dėmčėnko T., Vasiliauskienė D., Urbonavičius J., Marčiulaitienė E., Vasarevičius S., Benlemlih M. Evolution of Microbial Composition and Enzymatic Activities during the Composting of Textile Waste. Applied Sciences 2020:10(11):3758. https://doi.org/10.3390/app10113758
[16] Ozuysal A., Akinci G. The assessment of refuse derived fuel (RDF) production from textile waste. Eurasian Journal of Environmental Research 2019:3(2):27–32.
[17] Hasanzadeh E., Mirmohamadsadeghi S., Karimi K. Enhancing energy production from waste textile by hydrolysis of synthetic parts. Fuel 2018:218:41–48. https://doi.org/10.1016/j.fuel.2018.01.035
[18] Wang H., Kaur G., Pensupa N., Uisan K., Du C., Yang X., Sze Ki Lin C. Textile waste valorization using submerged filamentous fungal fermentation. Process Safety and Environmental Protection 2018:118:143–151. https://doi.org/10.1016/j.psep.2018.06.038 Asdrubali F., D’Alessandro F., Schiavoni S. A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies 2015:4:1–17. https://doi.org/10.1016/j.susmat.2015.05.002
[20] Briga-Sá A., Gaibor N., Magalhães L., Pinto T., Leitão D. Thermal performance characterization of cement-based lightweight blocks incorporating textile waste. Construction and Building Materials 2022:321:126330. https://doi.org/10.1016/j.conbuildmat.2022.126330
[21] Palme A., Peterson A., de la Motte H., Theliander H., Brelid H. Development of an efficient route for combined recycling of PET and cotton from mixed fabrics. Textiles and Clothing Sustainability 2017:3:Art4. https://doi.org/10.1186/s40689-017-0026-9
[22] Köksalan M., Wallenius J., Zionts S. An Early History of Multiple Criteria Decision Making. Journal of Multi-Criteria Decision Analysis 2013:20:87–94. https://doi.org/10.1002/mcda.1481
[23] Vamza I., Valters K., Blumberga D. Multi-Criteria Analysis of Lignocellulose Substrate Pre-Treatment. Environmental and Climate Technologies 2020:24(3):483–492. https://doi.org/10.2478/rtuect-2020-0118
[25] Vanaga R., Blumberga A., Gusca J., Blumberga B. Choosing the best nature’s strategy with the highest thermodynamic potential for application in building thermal envelope using MCA analysis. Energy Procedia 2018:152:450–455. https://doi.org/10.1016/j.egypro.2018.09.252
[26] Rozentale L., Blumberga D. Cost-Benefit and Multi-Criteria Analysis of Wind Energy Parks Development Potential in Latvia. Environmental and Climate Technologies 2021:25(1):1229–1240. https://doi.org/10.2478/rtuect-2021-0093
[27] Adem Esmail B., Geneletti D. Multi-criteria decision analysis for nature conservation: A review of 20 years of applications. Methods in Ecology and Evolution 2018:9(1):42–53. https://doi.org/10.1111/2041-210X.12899
[29] A Zero Waste hierarchy for Europe [Online]. [Accessed 12.04.2022]. Available: https://zerowasteeurope.eu/2019/05/a-zero-waste-hierarchy-for-europe/ Stegmann P., Londo M., Junginger M. The circular bioeconomy: Its elements and role in European bioeconomy cluster. Resources, Conservation & Recycling 2020:6:100029. https://doi.org/10.1016/j.rcrx.2019.100029