Have a personal or library account? Click to login
Life Cycle Assessment of an Innovative Microalgae Cultivation System in the Baltic Region: Results from SMORP Project Cover

Life Cycle Assessment of an Innovative Microalgae Cultivation System in the Baltic Region: Results from SMORP Project

Open Access
|Feb 2023

References

  1. [1] Andersen A. R. Algal culturing techniques. San Diego, California: Elsevier Academic Press, 2005.
  2. [2] Wen Z., Johnson M. Microalgae as feedstock for biofuel production. Virginia Cooperative Extension Publication, 2009.
  3. [3] Tredici M. Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 2010:1:143–162. https://doi.org/10.4155/bfs.09.10
  4. [4] Komagata K., Sugawara H. e Y. Ugawa, World Catalog of Algae, second edition. WFCC World Data Center on Microorganism, Saitama, Japan: RIKEN, 1989.
  5. [5] Preisig R. H., Robert A. A. Historical review of algal culturing techniques. In Algal culturing techniques, San Diego, California, Elsevier Academic Press, 2005:1–12. https://doi.org/10.1016/B978-012088426-1/50002-0
  6. [6] Spoehr H. A., Milner H. W. Chlorella as a source of food. Yearb. Canegie Inst. Wash., 1947.
  7. [7] Cook P. M. Some problems in the large-scale culture of Chlorella. in The Culturing of Algae, Yellow Springs, Ohio, Antioch Press, 1950:53–75.
  8. [8] Pirson A., Lorenzen H. Synchronized dividing algae. Annual Rev. Plant Physiol 1966:58–439. https://doi.org/10.1146/annurev.pp.17.060166.002255
  9. [9] Park H., Lee C. -G. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae. Biotechnology Journal 2016:11:1461–1470. https://doi.org/10.1002/biot.201600041
  10. [10] Adesanya V. O., Davey M. P., Scott S. A., Smith A. G. Kinetic modelling of growth and storage molecule production in microalgae under mixotrophic and autotrophic conditions. Bioresource Technology 2014:157:293–304. https://doi.org/10.1016/j.biortech.2014.01.032
  11. [11] Gonzalez-Fernandez C., et al. Biochemical methane potential of microalgae biomass using different microbial inocula. Biotechnol Biofuels 2018:11:184. https://doi.org/10.1186/s13068-018-1188-7
  12. [12] Chynoweth D. Review of Biomethane from Marine biomass. University of Florida, 2002.
  13. [13] Cavinato C., Ugurlu A., Godos I., Kendir E., Gonzalez-Fernandez C. Biogas production from microalgae. In Microalgae-Based Biofuels and Bioproducts, Duxford, UK, Woodhead Publishing, 2017:155–182. https://doi.org/10.1016/B978-0-08-101023-5.00007-8
  14. [14] Pachauri R., Reisinger A. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, 2007.
  15. [15] Pires J., Martins F. Recent developments on carbon capture and storage: an overview. Chemical Engineering Research and Design 2011:89(9):1446–1460. https://doi.org/10.1016/j.cherd.2011.01.028
  16. [16] Lam M., Lee K., Mohamed A. Current status and challenges on microalgal-based carbon capture. Internetional Journal of Greenhouse Gas Control 2012:10:456–469. https://doi.org/10.1016/j.ijggc.2012.07.010
  17. [17] Lam M., Lee K. Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnol Adv 2012:30(3):73–90. https://doi.org/10.1016/j.biotechadv.2011.11.008
  18. [18] Morales M. d. M. Production of microalgae using centrate from anaerobic digestion as the nutrient source. Algal Research 2015:9:297–305. https://doi.org/10.1016/j.algal.2015.03.018
  19. [19] Bilanovic D., Andargatchew A., Kroeger T. Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations – response surface methodology analysis. Energy Conversion and Management 2009:50(2):262–267. https://doi.org/10.1016/j.enconman.2008.09.024
  20. [20] Ramanna L., Guldhe A., Rawat I., Bux F. The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources. Bioresour. Technol. 2014:168:127–135. https://doi.org/10.1016/j.biortech.2014.03.064
  21. [21] Marazzi F., Bellucci M., Rossi R., Fornaroli R., Ficara E., Mezzanotte V. Outdoor pilot trial integrating a sidestream microalgae process for the treatment of centrate under non optimal climate conditions. Algal Research 2019:39:101430. https://doi.org/10.1016/j.algal.2019.101430
  22. [22] Saharan B., Sharma D., Sahu R. S. O., Warren A. Towards algal biofuel production: a concept of green bioenergy development. Innov Rom Food Biotechnol 2013:1–21.
  23. [23] Borowitzka M. Commercial production of microalgae: ponds, tanks, tubes and fermenters. Journal of Biotechnology 1999:35:313–321. https://doi.org/10.1016/S0079-6352(99)80123-4
  24. [24] Moheimani N. The culture of coccolithophorid algae for carbon dioxide bioremediation. Murdoch University, Pert, Australia, 2005.
  25. [25] Chisti Y. Raceways-based production of algal crude oil. In Microalgal biotechnology: Potential and production, Berlin, Germany, De Gruyter, 2012:113–146. https://doi.org/10.1515/9783110225020.113
  26. [26] Tredici M. Mass production of microalgae: hotobioreactors. Microalgal Culture, Blackwell Science 2004:178–214. https://doi.org/10.1002/9780470995280.ch9
  27. [27] Stephenson A., Kazamia E., Dennis J., Howe C., Scott S., Smith A. Life-Cycle Assessment of Potential Algal Biodiesel Production in the United Kingdom: A Comparison of Raceways and Air-Lift Tubular Bioreactors. Energy & Fuels 2010:24:4062–4077. https://doi.org/10.1021/ef1003123
  28. [28] Alcaine A. Biodiesel from microalgae, Final degree project. Royal School of Technology Kungliga Tekniska Högskolan, Stockholm, Sweden, 2010.
  29. [29] Borowitzka M. Culturing Microalgae in Outdoor Ponds. In Algal Culturing Techniques, San Diego, California, Elsevier Academic Press, 2005:205–2018. https://doi.org/10.1016/B978-012088426-1/50015-9
  30. [30] Spruijt J., Schipperus R., Kootstra M., Visser C. d., Parker B. AlgaEconomics: biobioeconomic production models of micro-algae and downstream processing to produce bio energy carriers. Public Output report of the EnAlgae project, Swansea, 2015.
  31. [31] Xu L., Weathers P., Xiong X., Liu C. Microalgal bioreactors: Challenges and opportunities. Eng. life Sci. 2009:9:178–189. https://doi.org/10.1002/elsc.200800111
  32. [32] Grobbelaar J. Mass Production of Microalgae at Optimal Photosynthetic Rates, Dubinsky Z (ed) Photosynthesis. InTech, 2013.
  33. [33] White D., et al. Best Practices for the Pilot-Scale Cultivation of Microalgae. Public Output report of the EnAlgae project, Swansea, 2015.
  34. [34] Gerardo M. L., Van den Hende S., Vervaeren H., Coward T., Skill S. Harvesting of microalgae within a biorefinery approach: a review of the developments and case studies from pilot-plants. Algal Research 2015:11:248–262. https://doi.org/10.1016/j.algal.2015.06.019
  35. [35] Carlsson A., Van Bielen J. Micro-and macro-algae: utility for industrial applications. UK: CPL Press, 2007.
  36. [36] Barreiro-Vescovo S., Barbera E., Bertucco A., Sforza E. Integration of Microalgae Cultivation in a Biogas Production Process from Organic Municipal Solid Waste: From Laboratory to Pilot Scale. ChemEngineering 2020:4(2):25. https://doi.org/10.3390/chemengineering4020025
  37. [37] Habouzit F., Hamelin J., Santa-Catalina G., Steyer J.-P., Bernet N. Biofilm development during the start-up period of anaerobic biofilm reactors: the biofilm archaea community is highly dependent on the support material. Microb. Biotechnology 2014:7:257–264. https://doi.org/10.1111/1751-7915.12115
  38. [38] Cavinato C., Ugurlu A., Godos I., Kendir E., Gonzalez-Fernandez C. Biogas production from microalgae. In Microalgae-Based Biofuels and Bioproducts, Duxford, UK, Woodhead Publishing, 2017:155–182. https://doi.org/10.1016/B978-0-08-101023-5.00007-8
  39. [39] Yoo C., Jun S., Lee J. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology 2010:101(1s):S71–S74. https://doi.org/10.1016/j.biortech.2009.03.030
  40. [40] Spruijt J., Schipperus R., Kootstra M., d. Visser C., Parker B. AlgaEconomics: biobioeconomic production models of micro-algae and downstream processing to produce bio energy carriers. Public Output report of the EnAlgae project, Swansea, 2015.
  41. [41] Huntley M., Redalje D. CO2 Mitigation and Renewable Oil from Photosynthetic Microbes: A New Appraisal. Mitigation and Adpotion Strat. for Global Change 2007:12:273–608. https://doi.org/10.1007/s11027-006-7304-1
  42. [42] Norsker N., Barbosa M., Vermue M., Wijffels R. Microalgal Production – A Close Look at the Economics. Biotechnology Advances 2011:29(1):24–27. https://doi.org/10.1016/j.biotechadv.2010.08.005
  43. [43] Dębowski M., Zieliński M., Kazimierowicz J., Kujawska N., Talbierz S. Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development – Advantages and Limitations. Sustainability 2020:12(23):9980. https://doi.org/10.3390/su12239980
  44. [44] Collet P., Hélias A., Lardon L., Steyer J., Bernard O. Reccomendations for Life Cycle Assessment of algal fuels. Applied Energy 2015:154:1089–1102. https://doi.org/10.1016/j.apenergy.2015.03.056
  45. [45] Romagnoli F. SMORPs project, s.n., Riga, Latvia, 2018.
  46. [46] Chisti Y. Raceways-based production of algal crude oil. In Microalgal biotechnology: Potential and production, Berlin, C. Posten & C. Walter (Eds.). De Gruyter, 2013. https://doi.org/10.1515/9783110225020.113
  47. [47] Van der Weide R., Schipperus R., van Dijk W. Algae cultivation using digestate as a nutrient source: opportunities and challenges. Proceedings European Biomass Congress and Exhibition, Hamburg, 2014.
  48. [48] Ugetti E., Sialve B. Anaerobic digestate as substrate for microalgae culture: The role of ammonium concentration on the microlagae productivity. Biosource Technology 2014:152:437–443. https://doi.org/10.1016/j.biortech.2013.11.036
  49. [49] Cai T., Park S., Racharaks R., Li Y. Cultivation of Nannochloropsis salina using anaerobic digestion effluent as a nutrient source for biofuel production. Applied Energy 2013:108:486–492. https://doi.org/10.1016/j.apenergy.2013.03.056
  50. [50] Van Dijk W., Van der Weide R., Van Gennep C. Algae production pilot open ponds Lelystad, Wageningen, UR: ACRRES, 2016.
  51. [51] Brown L. M. Uptake of carbon dioxide from flue gas by microalgae. Energy Convers. Manag. 1996:37(6–8):1363–1367. https://doi.org/10.1016/0196-8904(95)00347-9
  52. [52] Cremaschi S., Yadala S. A Dynamic Optimization Model for Designing Open-Channel Raceway Ponds for Batch Production of Algal Biomass. Processes 2016:4(2):10. https://doi.org/10.3390/pr4020010
  53. [53] EnAlgae: an INTERREG IVB North West Strategic Initiative. [Online]. [Accessed: 11.06.2022]. Available: http://www.enalgae.eu/
  54. [54] Marazzi F., Bellucci M., Rossi S., Fornaroli R., Ficara E., Mezzanotte V. Outdoor pilot trial integrating a sidestream microalgae process for the treatment of centrate under non optimal climate conditions. Algal Research 2019:39:101430. https://doi.org/10.1016/j.algal.2019.101430
  55. [55] Lee E., Jalalizadeh M., Zhang M. Growth kinetic models for microalgae cultivation: A review. Algal Research 2015:12:497˗512. https://doi.org/10.1016/j.algal.2015.10.004
  56. [56] Liu J., Chen F. Biology and Industrial Applications of Chlorella: Advances and Prospects. In Microalgae Biotechnology. Springer, Switzerland 2016:1–37. https://doi.org/10.1007/10_2014_286
  57. [57] Mata T., Martins A., Caetano N. Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews 2010:14(1):217–232. https://doi.org/10.1016/j.rser.2009.07.020
  58. [58] Keevallik S., Loitjarv K. Solar radiation at the surface in the Baltic Proper. Oceanologia 2010:52(4):583–597. https://doi.org/10.5697/oc.52-4.583
  59. [59] Dijk W., Weide R., Gennep C. Algae production pilot open ponds Lelystad. ACRRES, Wageningen UR, 2016.
  60. [60] Sager J., Farlane C. Radiation. Plant Growth Chamber Handbook. North Central Regional Research Publication. 1997:1–30.
  61. [61] Smith C., Lof G., Jones R. Measurement and analysis of evaporation from an inactive outdoor swimming pool. Solar Energy 1994:53(1):3–7. https://doi.org/10.1016/S0038-092X(94)90597-5
  62. [62] Rogers R., Yau M. A Short Course in Cloud Physics. Pergamon Press, 1989.
  63. [63] Sun C., Fu Q., Liao Q. X. A., Huang Y., Zhu X. A., Chang H. Life-cycle assessment of biofuel production from microalgae via various bioenergy conversion systems. Energy 2019:171:1033–1045. https://doi.org/10.1016/j.energy.2019.01.074
  64. [64] Zaimes G., Khanna V. Microalgal biomass production pathways: evaluation of life cycle environmental impacts. Biotechnology for Biofuels 2013:6:Article 88. https://doi.org/10.1186/1754-6834-6-88
  65. [65] Apel A., Weuster-Botz D. Engineering solutions for open microalgae mass cultivation and realistic indoor simulation of outdoor environments. Bioprocess and Biosystems Engineering 2015:38:995–1008. https://doi.org/10.1007/s00449-015-1363-1
  66. [66] Pérez Lopéz P., ge Vree J. H., Feijoo G., Bosma R., Barbosa M., Moreira M., Wijffels R. H., van Boxtel A. J. B., Kleinegris D. M. M. Comparative life cycle assessment of real pilot reactors for microalgae cultivation in different seasons. Applied Energy 2017:205:1151–1164. https://doi.org/10.1016/j.apenergy.2017.08.102
  67. [67] Pasell H., Dhaliwal H., Reno M., Wu B., Amotz A., Ivry E., Czartoski T. Algae biodoesel life cycle assessment using current commercial data. Journal of Environmental Management 2013:129:103–111. https://doi.org/10.1016/j.jenvman.2013.06.055
  68. [68]. Jolliet O., et al. IMPACT 2002+: A new life cycle impact assessment methodology. The International Journal of Life Cycle Assessment 2003:8:324–330. https://doi.org/10.1007/BF02978505
  69. [69]. Humbert S. et al. IMPACT 2002+: User Guide, 2012. [Online]. [Accessed: 05.09.2022]. Available: https://quantis.com/pdf/IMPACT2002_UserGuide_for_vQ2.21.pdf
  70. [70] Verberkt B. Proefonderzoek algenfarming: terugwinnen van stikstof en fosfaat als grondstof uit afvalwater. (Algae farming pilot study: recovery of nitrogen and phosphate as raw materials from waste water). Lochem, 2012. (In Dutch).
  71. [71] Uijterlinde C., Heijkoop N. Effluentpolishing met algentechnologie. (Effluent polishing with algae technology). STOWA, Utrecht, 2010. (In Dutch)
  72. [72] Collet P., Hélias A., Lardon L., Steyer J., Bernard O. Reccomendations for Life Cycle Assessment of algal fuels. Applied Energy 2015:154:1089–1102. https://doi.org/10.1016/j.apenergy.2015.03.056
  73. [73] Collet P., Hélias A., Lardon L., Ras M., Goy R., Steyer J. Life-cycle assessment of microalgae culture coupled to biogas production. Biosource Technology 2011:102(1):207–214. https://doi.org/10.1016/j.biortech.2010.06.154
  74. [74] Sfez S., Van de Hende S., Taelman E., Meester S., Dewulf J. Environmental sustainability assessment of a microalgae raceway pond treating aquaculture wastewater: From up-scaling to system integration. Bioresource Technology 2015:190:321–331. https://doi.org/10.1016/j.biortech.2015.04.088
DOI: https://doi.org/10.2478/rtuect-2023-0010 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 117 - 136
Submitted on: Sep 17, 2022
Accepted on: Dec 21, 2022
Published on: Feb 13, 2023
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2023 Francesco Romagnoli, Alessandro Thedy, Baiba Ievina, Maksims Feofilovs, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.