[3] Tredici M. Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 2010:1:143–162. https://doi.org/10.4155/bfs.09.10
[5] Preisig R. H., Robert A. A. Historical review of algal culturing techniques. In Algal culturing techniques, San Diego, California, Elsevier Academic Press, 2005:1–12. https://doi.org/10.1016/B978-012088426-1/50002-0
[9] Park H., Lee C. -G. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae. Biotechnology Journal 2016:11:1461–1470. https://doi.org/10.1002/biot.201600041
[10] Adesanya V. O., Davey M. P., Scott S. A., Smith A. G. Kinetic modelling of growth and storage molecule production in microalgae under mixotrophic and autotrophic conditions. Bioresource Technology 2014:157:293–304. https://doi.org/10.1016/j.biortech.2014.01.032
[11] Gonzalez-Fernandez C., et al. Biochemical methane potential of microalgae biomass using different microbial inocula. Biotechnol Biofuels 2018:11:184. https://doi.org/10.1186/s13068-018-1188-7
[13] Cavinato C., Ugurlu A., Godos I., Kendir E., Gonzalez-Fernandez C. Biogas production from microalgae. In Microalgae-Based Biofuels and Bioproducts, Duxford, UK, Woodhead Publishing, 2017:155–182. https://doi.org/10.1016/B978-0-08-101023-5.00007-8
[14] Pachauri R., Reisinger A. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, 2007.
[15] Pires J., Martins F. Recent developments on carbon capture and storage: an overview. Chemical Engineering Research and Design 2011:89(9):1446–1460. https://doi.org/10.1016/j.cherd.2011.01.028
[16] Lam M., Lee K., Mohamed A. Current status and challenges on microalgal-based carbon capture. Internetional Journal of Greenhouse Gas Control 2012:10:456–469. https://doi.org/10.1016/j.ijggc.2012.07.010
[18] Morales M. d. M. Production of microalgae using centrate from anaerobic digestion as the nutrient source. Algal Research 2015:9:297–305. https://doi.org/10.1016/j.algal.2015.03.018
[19] Bilanovic D., Andargatchew A., Kroeger T. Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations – response surface methodology analysis. Energy Conversion and Management 2009:50(2):262–267. https://doi.org/10.1016/j.enconman.2008.09.024
[20] Ramanna L., Guldhe A., Rawat I., Bux F. The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources. Bioresour. Technol. 2014:168:127–135. https://doi.org/10.1016/j.biortech.2014.03.064
[21] Marazzi F., Bellucci M., Rossi R., Fornaroli R., Ficara E., Mezzanotte V. Outdoor pilot trial integrating a sidestream microalgae process for the treatment of centrate under non optimal climate conditions. Algal Research 2019:39:101430. https://doi.org/10.1016/j.algal.2019.101430
[22] Saharan B., Sharma D., Sahu R. S. O., Warren A. Towards algal biofuel production: a concept of green bioenergy development. Innov Rom Food Biotechnol 2013:1–21.
[25] Chisti Y. Raceways-based production of algal crude oil. In Microalgal biotechnology: Potential and production, Berlin, Germany, De Gruyter, 2012:113–146. https://doi.org/10.1515/9783110225020.113
[27] Stephenson A., Kazamia E., Dennis J., Howe C., Scott S., Smith A. Life-Cycle Assessment of Potential Algal Biodiesel Production in the United Kingdom: A Comparison of Raceways and Air-Lift Tubular Bioreactors. Energy & Fuels 2010:24:4062–4077. https://doi.org/10.1021/ef1003123
[29] Borowitzka M. Culturing Microalgae in Outdoor Ponds. In Algal Culturing Techniques, San Diego, California, Elsevier Academic Press, 2005:205–2018. https://doi.org/10.1016/B978-012088426-1/50015-9
[30] Spruijt J., Schipperus R., Kootstra M., Visser C. d., Parker B. AlgaEconomics: biobioeconomic production models of micro-algae and downstream processing to produce bio energy carriers. Public Output report of the EnAlgae project, Swansea, 2015.
[31] Xu L., Weathers P., Xiong X., Liu C. Microalgal bioreactors: Challenges and opportunities. Eng. life Sci. 2009:9:178–189. https://doi.org/10.1002/elsc.200800111
[34] Gerardo M. L., Van den Hende S., Vervaeren H., Coward T., Skill S. Harvesting of microalgae within a biorefinery approach: a review of the developments and case studies from pilot-plants. Algal Research 2015:11:248–262. https://doi.org/10.1016/j.algal.2015.06.019
[36] Barreiro-Vescovo S., Barbera E., Bertucco A., Sforza E. Integration of Microalgae Cultivation in a Biogas Production Process from Organic Municipal Solid Waste: From Laboratory to Pilot Scale. ChemEngineering 2020:4(2):25. https://doi.org/10.3390/chemengineering4020025
[37] Habouzit F., Hamelin J., Santa-Catalina G., Steyer J.-P., Bernet N. Biofilm development during the start-up period of anaerobic biofilm reactors: the biofilm archaea community is highly dependent on the support material. Microb. Biotechnology 2014:7:257–264. https://doi.org/10.1111/1751-7915.12115
[38] Cavinato C., Ugurlu A., Godos I., Kendir E., Gonzalez-Fernandez C. Biogas production from microalgae. In Microalgae-Based Biofuels and Bioproducts, Duxford, UK, Woodhead Publishing, 2017:155–182. https://doi.org/10.1016/B978-0-08-101023-5.00007-8
[39] Yoo C., Jun S., Lee J. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology 2010:101(1s):S71–S74. https://doi.org/10.1016/j.biortech.2009.03.030
[40] Spruijt J., Schipperus R., Kootstra M., d. Visser C., Parker B. AlgaEconomics: biobioeconomic production models of micro-algae and downstream processing to produce bio energy carriers. Public Output report of the EnAlgae project, Swansea, 2015.
[41] Huntley M., Redalje D. CO2 Mitigation and Renewable Oil from Photosynthetic Microbes: A New Appraisal. Mitigation and Adpotion Strat. for Global Change 2007:12:273–608. https://doi.org/10.1007/s11027-006-7304-1
[42] Norsker N., Barbosa M., Vermue M., Wijffels R. Microalgal Production – A Close Look at the Economics. Biotechnology Advances 2011:29(1):24–27. https://doi.org/10.1016/j.biotechadv.2010.08.005
[43] Dębowski M., Zieliński M., Kazimierowicz J., Kujawska N., Talbierz S. Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development – Advantages and Limitations. Sustainability 2020:12(23):9980. https://doi.org/10.3390/su12239980
[44] Collet P., Hélias A., Lardon L., Steyer J., Bernard O. Reccomendations for Life Cycle Assessment of algal fuels. Applied Energy 2015:154:1089–1102. https://doi.org/10.1016/j.apenergy.2015.03.056
[46] Chisti Y. Raceways-based production of algal crude oil. In Microalgal biotechnology: Potential and production, Berlin, C. Posten & C. Walter (Eds.). De Gruyter, 2013. https://doi.org/10.1515/9783110225020.113
[47] Van der Weide R., Schipperus R., van Dijk W. Algae cultivation using digestate as a nutrient source: opportunities and challenges. Proceedings European Biomass Congress and Exhibition, Hamburg, 2014.
[48] Ugetti E., Sialve B. Anaerobic digestate as substrate for microalgae culture: The role of ammonium concentration on the microlagae productivity. Biosource Technology 2014:152:437–443. https://doi.org/10.1016/j.biortech.2013.11.036
[49] Cai T., Park S., Racharaks R., Li Y. Cultivation of Nannochloropsis salina using anaerobic digestion effluent as a nutrient source for biofuel production. Applied Energy 2013:108:486–492. https://doi.org/10.1016/j.apenergy.2013.03.056
[52] Cremaschi S., Yadala S. A Dynamic Optimization Model for Designing Open-Channel Raceway Ponds for Batch Production of Algal Biomass. Processes 2016:4(2):10. https://doi.org/10.3390/pr4020010
[54] Marazzi F., Bellucci M., Rossi S., Fornaroli R., Ficara E., Mezzanotte V. Outdoor pilot trial integrating a sidestream microalgae process for the treatment of centrate under non optimal climate conditions. Algal Research 2019:39:101430. https://doi.org/10.1016/j.algal.2019.101430
[55] Lee E., Jalalizadeh M., Zhang M. Growth kinetic models for microalgae cultivation: A review. Algal Research 2015:12:497˗512. https://doi.org/10.1016/j.algal.2015.10.004
[56] Liu J., Chen F. Biology and Industrial Applications of Chlorella: Advances and Prospects. In Microalgae Biotechnology. Springer, Switzerland 2016:1–37. https://doi.org/10.1007/10_2014_286
[57] Mata T., Martins A., Caetano N. Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews 2010:14(1):217–232. https://doi.org/10.1016/j.rser.2009.07.020
[58] Keevallik S., Loitjarv K. Solar radiation at the surface in the Baltic Proper. Oceanologia 2010:52(4):583–597. https://doi.org/10.5697/oc.52-4.583
[61] Smith C., Lof G., Jones R. Measurement and analysis of evaporation from an inactive outdoor swimming pool. Solar Energy 1994:53(1):3–7. https://doi.org/10.1016/S0038-092X(94)90597-5
[63] Sun C., Fu Q., Liao Q. X. A., Huang Y., Zhu X. A., Chang H. Life-cycle assessment of biofuel production from microalgae via various bioenergy conversion systems. Energy 2019:171:1033–1045. https://doi.org/10.1016/j.energy.2019.01.074
[64] Zaimes G., Khanna V. Microalgal biomass production pathways: evaluation of life cycle environmental impacts. Biotechnology for Biofuels 2013:6:Article 88. https://doi.org/10.1186/1754-6834-6-88
[65] Apel A., Weuster-Botz D. Engineering solutions for open microalgae mass cultivation and realistic indoor simulation of outdoor environments. Bioprocess and Biosystems Engineering 2015:38:995–1008. https://doi.org/10.1007/s00449-015-1363-1
[66] Pérez Lopéz P., ge Vree J. H., Feijoo G., Bosma R., Barbosa M., Moreira M., Wijffels R. H., van Boxtel A. J. B., Kleinegris D. M. M. Comparative life cycle assessment of real pilot reactors for microalgae cultivation in different seasons. Applied Energy 2017:205:1151–1164. https://doi.org/10.1016/j.apenergy.2017.08.102
[67] Pasell H., Dhaliwal H., Reno M., Wu B., Amotz A., Ivry E., Czartoski T. Algae biodoesel life cycle assessment using current commercial data. Journal of Environmental Management 2013:129:103–111. https://doi.org/10.1016/j.jenvman.2013.06.055
[68]. Jolliet O., et al. IMPACT 2002+: A new life cycle impact assessment methodology. The International Journal of Life Cycle Assessment 2003:8:324–330. https://doi.org/10.1007/BF02978505
[69]. Humbert S. et al. IMPACT 2002+: User Guide, 2012. [Online]. [Accessed: 05.09.2022]. Available: https://quantis.com/pdf/IMPACT2002_UserGuide_for_vQ2.21.pdf
[70] Verberkt B. Proefonderzoek algenfarming: terugwinnen van stikstof en fosfaat als grondstof uit afvalwater. (Algae farming pilot study: recovery of nitrogen and phosphate as raw materials from waste water). Lochem, 2012. (In Dutch).
[72] Collet P., Hélias A., Lardon L., Steyer J., Bernard O. Reccomendations for Life Cycle Assessment of algal fuels. Applied Energy 2015:154:1089–1102. https://doi.org/10.1016/j.apenergy.2015.03.056
[73] Collet P., Hélias A., Lardon L., Ras M., Goy R., Steyer J. Life-cycle assessment of microalgae culture coupled to biogas production. Biosource Technology 2011:102(1):207–214. https://doi.org/10.1016/j.biortech.2010.06.154
[74] Sfez S., Van de Hende S., Taelman E., Meester S., Dewulf J. Environmental sustainability assessment of a microalgae raceway pond treating aquaculture wastewater: From up-scaling to system integration. Bioresource Technology 2015:190:321–331. https://doi.org/10.1016/j.biortech.2015.04.088