[3] Dupnock T. L., Deshusses M. A. Detailed investigations of dissolved hydrogen and hydrogen mass transfer in a biotrickling filter for upgrading biogas. Bioresour. Technol. 2019:290:121780. https://doi.org/10.1016/j.biortech.2019.121780
[4] Concas G., et al. Power to Methane technologies through renewable H2 and CO2 from biogas: The case of Sardinia. E3S Web Conf. 2021:312:08015. https://doi.org/10.1051/e3sconf/202131208015
[6] Lee W. J., et al. Recent trend in thermal catalytic low temperature CO2 methanation: A critical review. Catal. Today 2019:368:2–19. https://doi.org/10.1016/j.cattod.2020.02.017
[9] Ich Ngo S., et al. Experiment and numerical analysis of catalytic CO2 methanation in bubbling fluidized bed reactor. Energy Convers. Manag. 2021:233:113863. https://doi.org/10.1016/j.enconman.2021.113863
[10] Zavarkó M., et al. Past, present and near future: An overview of closed, running and planned biomethanation facilities in Europe. Energies 2021:14(18):1–26. https://doi.org/10.3390/en14185591
[11] Sposob M., Wahid R., Fischer K. Ex-situ biological CO2 methanation using trickle bed reactor: review and recent advances. Rev. Environ. Sci. Biotechnol. 2021:20(4):1087–1102. https://doi.org/10.1007/s11157-021-09589-7
[12] Rachbauer L., et al. Biological biogas upgrading capacity of a hydrogenotrophic community in a trickle-bed reactor. Appl. Energy 2016:180:483–490. https://doi.org/10.1016/j.apenergy.2016.07.109
[13] Ashraf M. T., et al. Biomethanation in a thermophilic biotrickling filter — pH control and lessons from long-term operation. Bioresour. Technol. Reports 2020:11:100525. https://doi.org/10.1016/j.biteb.2020.100525
[14] Strübing D., et al. Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation. Appl. Energy 2018:232:543–554. https://doi.org/10.1016/j.apenergy.2018.09.225
[15] Ashraf M. T., Triolo J. M., Yde L. Assay for testingpacking materials for ex-situ biomethanation. Proceedings of the 28th European Biomass Conference and Exhibition 2020:3:6–9.
[17] Bassani I., et al. Optimization of hydrogen dispersion in thermophilic up-flow reactors for ex situ biogas upgrading. Bioresour. Technol. 2017:234:310–319. https://doi.org/10.1016/j.biortech.2017.03.055
[19] Kusnere Z., et al. Packing materials for biotrickling filters used in biogas upgrading – biomethanation. Agronomy Research 2021:19(S1):819–833. https://doi.org/10.15159/ar.21.082
[20] Cheng K. C., Demirci A., Catchmark J. M. Advances in biofilm reactors for production of value-added products. Appl. Microbiol. Biotechnol. 2010:87(2):445–456. https://doi.org/10.1007/s00253-010-2622-3
[21] Hernández J., et al. Startup and long-term performance of biotrickling filters packed with polyurethane foam and poplar wood chips treating a mixture of ethylmercaptan, H2S, and NH3. J. Air Waste Manag. Assoc. 2013:63(4):462–471. https://doi.org/10.1080/10962247.2013.763305
[22] Lauka D., Blumberga D., Muizniece I. Materials fermentācijas stimulēsanai biogāzes ražošanas procesā Patenta Nr.15161 (Materials for stimulating fermentation in the biogas production process Patent No.15161.). Riga: RTU, 2015. (in Latvian)
[23] Jensen M. B., et al. Selecting carrier material for efficient biomethanation of industrial biogas-CO2 in a trickle-bed reactor. J. CO2 Util. 2021:51:101611. https://doi.org/10.1016/j.jcou.2021.101611
[24] Jee H. S., Nishio N., Nagai S. Continuous CH4 Production from H2 and CO2 by Methanobacterium thermoautotrophicum in a fixed-bed reactor. J. Ferment. Technol. 1988:66(2):235–238. https://doi.org/10.1016/0385-6380(88)90054-4
[25] Liu D., et al. A comparative study of mass transfer coefficients of reduced volatile sulfur compounds for biotrickling filter packing materials. Chem. Eng. J. 2015:260:209–221. https://doi.org/10.1016/j.cej.2014.08.070
[26] Andreasen R. R., et al. Air-water mass transfer of sparingly soluble odorous compounds in granular biofilter media. Chem. Eng. J. 2013:220:431–440. https://doi.org/10.1016/j.cej.2012.12.087
[27] Zevenhoven-Onderwater M., et al. The ash chemistry in fluidised bed gasification of biomass fuels. Part I: Predicting the chemistry of melting ashes and ash-bed material interaction. Fuel 2001:80(10):1489–1502. https://doi.org/10.1016/S0016-2361(01)00026-6
[28] Bachmaier H., Kuptz D., Hartmann H. Wood ashes from grate-fired heat and power plants: Evaluation of nutrient and heavy metal contents. Sustain. 2021:13(10):5482. https://doi.org/10.3390/su13105482
[29] Pasanen J., Louekari K., Malm J. Cadmium in Wood Ash Used as Fertilizer in Forestry: Risks to the Environment and Human Health. Helsinki: Ministry of Agriculture and Forestry, 2001.
[31] Ahmad J., et al. A step towards sustainable self-compacting concrete by using partial substitution of wheat straw ash and bentonite clay instead of cement. Sustain. 2021:13(2):1–17. https://doi.org/10.3390/su13020824
[32] Ringdalen E., Tangstad M. Softening and melting of SiO2, an important parameter for reactions with quartz in Si production. Adv. Molten Slags, Fluxes, Salts Proc. 10th Int. Conf. Molten Slags, Fluxes Salts 2016, 2017:2016(4):43–51. https://doi.org/10.1007/978-3-319-48769-4_4
[33] National Center for Biotechnology. CALCIUM OXIDE CaO – PubChem. 2016. [Online]. [Accessed 12.09.2022]. Available: https://pubchem.ncbi.nlm.nih.gov/compound/Lime#section=Fire-Potential
[34] Jensen M. B., et al. Integrating H2 injection and reactor mixing for low-cost H2 gas-liquid mass transfer in full-scale in situ biomethanation. Biochem. Eng. J. 2021:166:107869. https://doi.org/.1016/j.bej.2020.107869