Have a personal or library account? Click to login
Wood Ash Filter Material Characterization as a Carrier Material for Ex-Situ Biomethanation of Biogas in Biotrickling Filter Reactors Cover

Wood Ash Filter Material Characterization as a Carrier Material for Ex-Situ Biomethanation of Biogas in Biotrickling Filter Reactors

Open Access
|Feb 2023

References

  1. [1] Baena-Moreno F. M., et al. Review: recent advances in biogas purifying technologies. Int. J. Green Energy 2019:16(5):401–412. https://doi.org/10.1080/15435075.2019.1572610
  2. [2] Witte J., et al. Demonstrating direct methanation of real biogas in a fluidised bed reactor. Appl. Energy 2019:240:359–371. https://doi.org/10.1016/j.apenergy.2019.01.230
  3. [3] Dupnock T. L., Deshusses M. A. Detailed investigations of dissolved hydrogen and hydrogen mass transfer in a biotrickling filter for upgrading biogas. Bioresour. Technol. 2019:290:121780. https://doi.org/10.1016/j.biortech.2019.121780
  4. [4] Concas G., et al. Power to Methane technologies through renewable H2 and CO2 from biogas: The case of Sardinia. E3S Web Conf. 2021:312:08015. https://doi.org/10.1051/e3sconf/202131208015
  5. [5] Angelidaki I., et al. Biogas upgrading and utilization: Current status and perspectives. Biotechnol. Adv. 2018:36(2):452–466. https://doi.org/10.1016/j.biotechadv.2018.01.011
  6. [6] Lee W. J., et al. Recent trend in thermal catalytic low temperature CO2 methanation: A critical review. Catal. Today 2019:368:2–19. https://doi.org/10.1016/j.cattod.2020.02.017
  7. [7] Lecker B., et al. Biological hydrogen methanation – A review. Bioresour. Technol. 2017:245:1220–1228. https://doi.org/10.1016/j.biortech.2017.08.176
  8. [8] Ghaib K., Ben-Fares F. Z. Power-to-Methane: A state-of-the-art review. Renew. Sustain. Energy Rev. 2018:81:433–446. https://doi.org/10.1016/j.rser.2017.08.004
  9. [9] Ich Ngo S., et al. Experiment and numerical analysis of catalytic CO2 methanation in bubbling fluidized bed reactor. Energy Convers. Manag. 2021:233:113863. https://doi.org/10.1016/j.enconman.2021.113863
  10. [10] Zavarkó M., et al. Past, present and near future: An overview of closed, running and planned biomethanation facilities in Europe. Energies 2021:14(18):1–26. https://doi.org/10.3390/en14185591
  11. [11] Sposob M., Wahid R., Fischer K. Ex-situ biological CO2 methanation using trickle bed reactor: review and recent advances. Rev. Environ. Sci. Biotechnol. 2021:20(4):1087–1102. https://doi.org/10.1007/s11157-021-09589-7
  12. [12] Rachbauer L., et al. Biological biogas upgrading capacity of a hydrogenotrophic community in a trickle-bed reactor. Appl. Energy 2016:180:483–490. https://doi.org/10.1016/j.apenergy.2016.07.109
  13. [13] Ashraf M. T., et al. Biomethanation in a thermophilic biotrickling filter — pH control and lessons from long-term operation. Bioresour. Technol. Reports 2020:11:100525. https://doi.org/10.1016/j.biteb.2020.100525
  14. [14] Strübing D., et al. Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation. Appl. Energy 2018:232:543–554. https://doi.org/10.1016/j.apenergy.2018.09.225
  15. [15] Ashraf M. T., Triolo J. M., Yde L. Assay for testingpacking materials for ex-situ biomethanation. Proceedings of the 28th European Biomass Conference and Exhibition 2020:3:6–9.
  16. [16] Maegaard K., et al. Biogas upgrading with hydrogenotrophic methanogenic biofilms. Bioresour. Technol. 2019:287:121422. https://doi.org/10.1016/j.biortech.2019.121422
  17. [17] Bassani I., et al. Optimization of hydrogen dispersion in thermophilic up-flow reactors for ex situ biogas upgrading. Bioresour. Technol. 2017:234:310–319. https://doi.org/10.1016/j.biortech.2017.03.055
  18. [18] Kougias P. G., et al. Biological CO2 fixation in up-flow reactors via exogenous H2 addition. J. Biotechnol. 2020:319:1–7. https://doi.org/10.1016/j.jbiotec.2020.05.012
  19. [19] Kusnere Z., et al. Packing materials for biotrickling filters used in biogas upgrading – biomethanation. Agronomy Research 2021:19(S1):819–833. https://doi.org/10.15159/ar.21.082
  20. [20] Cheng K. C., Demirci A., Catchmark J. M. Advances in biofilm reactors for production of value-added products. Appl. Microbiol. Biotechnol. 2010:87(2):445–456. https://doi.org/10.1007/s00253-010-2622-3
  21. [21] Hernández J., et al. Startup and long-term performance of biotrickling filters packed with polyurethane foam and poplar wood chips treating a mixture of ethylmercaptan, H2S, and NH3. J. Air Waste Manag. Assoc. 2013:63(4):462–471. https://doi.org/10.1080/10962247.2013.763305
  22. [22] Lauka D., Blumberga D., Muizniece I. Materials fermentācijas stimulēsanai biogāzes ražošanas procesā Patenta Nr.15161 (Materials for stimulating fermentation in the biogas production process Patent No.15161.). Riga: RTU, 2015. (in Latvian)
  23. [23] Jensen M. B., et al. Selecting carrier material for efficient biomethanation of industrial biogas-CO2 in a trickle-bed reactor. J. CO2 Util. 2021:51:101611. https://doi.org/10.1016/j.jcou.2021.101611
  24. [24] Jee H. S., Nishio N., Nagai S. Continuous CH4 Production from H2 and CO2 by Methanobacterium thermoautotrophicum in a fixed-bed reactor. J. Ferment. Technol. 1988:66(2):235–238. https://doi.org/10.1016/0385-6380(88)90054-4
  25. [25] Liu D., et al. A comparative study of mass transfer coefficients of reduced volatile sulfur compounds for biotrickling filter packing materials. Chem. Eng. J. 2015:260:209–221. https://doi.org/10.1016/j.cej.2014.08.070
  26. [26] Andreasen R. R., et al. Air-water mass transfer of sparingly soluble odorous compounds in granular biofilter media. Chem. Eng. J. 2013:220:431–440. https://doi.org/10.1016/j.cej.2012.12.087
  27. [27] Zevenhoven-Onderwater M., et al. The ash chemistry in fluidised bed gasification of biomass fuels. Part I: Predicting the chemistry of melting ashes and ash-bed material interaction. Fuel 2001:80(10):1489–1502. https://doi.org/10.1016/S0016-2361(01)00026-6
  28. [28] Bachmaier H., Kuptz D., Hartmann H. Wood ashes from grate-fired heat and power plants: Evaluation of nutrient and heavy metal contents. Sustain. 2021:13(10):5482. https://doi.org/10.3390/su13105482
  29. [29] Pasanen J., Louekari K., Malm J. Cadmium in Wood Ash Used as Fertilizer in Forestry: Risks to the Environment and Human Health. Helsinki: Ministry of Agriculture and Forestry, 2001.
  30. [30] Dedovic N., et al. Efficiency of small scale manually fed boilers -mathematical models. Energies 2012:5(5):1470–1489. https://doi.org/10.3390/en5051470
  31. [31] Ahmad J., et al. A step towards sustainable self-compacting concrete by using partial substitution of wheat straw ash and bentonite clay instead of cement. Sustain. 2021:13(2):1–17. https://doi.org/10.3390/su13020824
  32. [32] Ringdalen E., Tangstad M. Softening and melting of SiO2, an important parameter for reactions with quartz in Si production. Adv. Molten Slags, Fluxes, Salts Proc. 10th Int. Conf. Molten Slags, Fluxes Salts 2016, 2017:2016(4):43–51. https://doi.org/10.1007/978-3-319-48769-4_4
  33. [33] National Center for Biotechnology. CALCIUM OXIDE CaO – PubChem. 2016. [Online]. [Accessed 12.09.2022]. Available: https://pubchem.ncbi.nlm.nih.gov/compound/Lime#section=Fire-Potential
  34. [34] Jensen M. B., et al. Integrating H2 injection and reactor mixing for low-cost H2 gas-liquid mass transfer in full-scale in situ biomethanation. Biochem. Eng. J. 2021:166:107869. https://doi.org/.1016/j.bej.2020.107869
DOI: https://doi.org/10.2478/rtuect-2023-0008 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 92 - 102
Submitted on: Oct 12, 2022
Accepted on: Nov 25, 2022
Published on: Feb 8, 2023
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2023 Zane Kusnere, Kriss Spalvins, Martins Bataitis, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.