Have a personal or library account? Click to login
Open Access
|Jan 2023

References

  1. [1] Vorosmarty C., et al. Global water data: A newly endangered species. EOS 2001:82(5):54–54. https://doi.org/10.1029/01EO00031
  2. [2] Alsdorf D. E., et al. Measuring surface water from space. Reviews of Geophysics 2007:45(2):1–24. https://doi.org/10.1029/2006RG000197
  3. [3] Fekete B. M., et al. Rationale for Monitoring Discharge on the Ground. Journal of Hydrometeorology 2012:13(6):1977–1986. https://doi.org/10.1175/JHM-D-11-0126.1
  4. [4] Papa F., et al. Water Resources in Africa under Global Change: Monitoring Surface Waters from Space. Surveys in Geophysics 2022. https://doi.org/10.1007/s10712-022-09700-9
  5. [5] Global Runoff Data Centre. Homepage [Online].[ Accessed 19.10.2022]. Available: https://www.bafg.de/GRDC/EN/Home/homepage_node.html
  6. [6] Jincharadze Z., Javakhishvili M., Tsakadze V. Georgia Country Report: European Neighbourhood and Partnership Instrument – Shared Environmental Information System. Tbilisi: EEA, 2011.
  7. [7] Lohr H., et al. Water supply and Demand Management: National level assessment Report on Current and Planned Laws, Regulations and enforcement mechanisms in the Water Sector in Georgia. Tbilisi: UNDP-GEF Kura II Project, 2018.
  8. [8] Hannan T., et al. Desk study - Hydrology: UNDP/GEF project ‘Reducing transboundary degradation in the Kura Ara(k)s river basin’. Tbilisi: UNDP-GEF Kura II Project, 2013.
  9. [9] Chomakhidze D., et al. Small Hydropower Potential and its Development in Georgia. Environmental and Climate Technologies 2021:25(1):1347–1352. https://doi.org/10.2478/rtuect-2021-0102
  10. [10] Novak C. E. Preparation of water-resources data reports. WRD data reports preparation guide. Reston: U.S. Geological Survey, 1985. https://doi.org/10.3133/ofr85480
  11. [11] Di Baldassarre G., Montanari A. Uncertainty in river discharge observations: a quantitative analysis. Hydrology and Earth System Sciences 2009:13:913–921. www.hydrol-earth-syst-sci.net/13/913/2009/
  12. [12] Haghbin M., Sharafati A. A review of studies on estimating the discharge coefficient of flow control structures based on the soft computing models. Flow Measurement and Instrumentation 2022:83:102119. https://doi.org/10.1016/j.flowmeasinst.2021.102119
  13. [13] Kahaduwa A., Rajapakse L. Review of climate change impacts on reservoir hydrology and long-term basin-wide water resources management. Building Research & Information 2022:50(5):515–526. https://doi.org/10.1080/09613218.2021.1977908
  14. [14] Novak P., et al. Hydraulic structures. 4th ed. Hoboken: CRC Press, 2007.
  15. [15] Smetana J. Hydraulika 2. 1. Praha: Nakladatelství Československé akademie věd, 1957. (in Czech)
  16. [16] Yang J., et al. The Past and Present of Discharge Capacity Modeling for Spillways—A Swedish Perspective. Fluids 2019:4(1):10. https://doi.org/10.3390/fluids4010010
  17. [17] Blocken B., Gualtieri C. Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanics. Environmental Modelling & Software 2012:33:1–22. https://doi.org/10.1016/j.envsoft.2012.02.001
  18. [18] Herrera-Granados O., Kostecki S. W. Numerical and physical modeling of water flow over the ogee weir of the new Niedów barrage. Journal of Hydrology and Hydromechanics 2016:64(1):67–74. https://doi.org/10.1515/johh-2016-0013
  19. [19] Demeke G. K., et al. 3D Hydrodynamic Modelling Enhances the Design of Tendaho Dam Spillway, Ethiopia. Water 2019:11(1):82. https://doi.org/10.3390/w11010082
  20. [20] Kumcu S. Y. Investigation of flow over spillway modeling and comparison between experimental data and CFD analysis. KSCE Journal of Civil Engineering 2017:21(3):994–1003. https://doi.org/10.1007/s12205-016-1257-z
  21. [21] Kjølle A. Mechanical Equipment. Trondheim: Norwegian University of Science and Technology, 2001.
  22. [22] Baidar B., et al. Numerical Study of the Winter–Kennedy Flow Measurement Method in Transient Flows. Energies 2020:13(6):1310. https://doi.org/10.3390/en13061310
  23. [23] Jacobsen J., Olsen N. R. B. Numerical modelling of the capacity for a complex spillway. Proceedings of the Institution of Civil Engineers - Water Management 2010:163(6):283–288. https://doi.org/10.1680/wama.2010.163.6.283
  24. [24] Dargahi B. Flow characteristics of bottom outlets with moving gates. Journal of Hydraulic Research 2010:48(4):476–482. https://doi.org/10.1080/00221686.2010.507001
  25. [25] Adamkowski A., Janicki W. Elastic Water-Hammer Theory–Based Approach to Discharge Calculation in the Pressure-Time Method. Journal of Hydraulic Engineering 2017:143(5). https://doi.org/10.1061/(ASCE)HY.1943-7900.0001284
  26. [26] Renofalt B. M., Jansson R., Nilsson C. Effects of hydropower generation and opportunities for environmental flow management in Swedish riverine ecosystems. Freshwater Biology 2010:55(1):49–67. https://doi.org/10.1111/j.1365-2427.2009.02241.x
  27. [27] McManamay R. A., et al. Organizing Environmental Flow Frameworks to Meet Hydropower Mitigation Needs. Environmental Management 2016:58(3):365–385. https://doi.org/10.1007/s00267-016-0726-y
  28. [28] TEAR T. H. How Much Is Enough? The Recurrent Problem of Setting Measurable Objectives in Conservation. BioScience 2005:55(10):835–849. https://doi.org/10.1641/0006-3568(2005)055[0835:HMIETR]2.0.CO;2
DOI: https://doi.org/10.2478/rtuect-2023-0002 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 16 - 27
Submitted on: Apr 26, 2022
Accepted on: Oct 31, 2022
Published on: Jan 14, 2023
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2023 Eva Bilkova, Jiri Soucek, Ketevan Tskhakaia, Petr Nowak, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.