Have a personal or library account? Click to login
A Review of Bio-Based Adhesives from Primary and Secondary Biomass for Wood Composite Applications Cover

A Review of Bio-Based Adhesives from Primary and Secondary Biomass for Wood Composite Applications

Open Access
|Dec 2022

References

  1. [1] De Almeida T. H., de Sousa A. M., Martins A. S. M., Christoforo A. L., de Almeida D. H., Lahr F. A. R. Effect of service temperature on shear strength of Pinus wood for roof structures. Acta Scientiarum. Technology 2018:40. https://doi.org/10.4025/actascitechnol.v40i1.3091310.4025/actascitechnol.v40i1.30913
  2. [2] Ferreira A. M. et al. Biosourced binder for wood particleboards based on spent sulfite liquor and wheat flour. Polymers (Basel). 2018:10(10). https://doi.org/10.3390/polym1010107010.3390/polym10101070640394130960995
  3. [3] Irle M., Thoemen H., Sernek M. Wood-based panel technology. An Introduction for Specialists. Brunel University Press, 2010.
  4. [4] Salem M. Z. M., Böhm M., Barcík Š., Beránková J. Emisija formaldehida iz drvnih ploča s različitim ljepilima na Bazi formaldehida. (Formaldehyde emission from wood panels with different formaldehyde-based adhesives). Drv. Ind. 2011:62(3):177–183. https://doi.org/10.5552/drind.2011.1102 (In Croatian).10.5552/drind.2011.1102
  5. [5] Solt P. et al. Technological performance of formaldehyde-free adhesive alternatives for particleboard industry. Int. J. Adhes. Adhes. 2019:94:99–131. https://doi.org/10.1016/j.ijadhadh.2019.04.00710.1016/j.ijadhadh.2019.04.007
  6. [6] Teixeira D. E., Pereira D. D. C., Nakamura A. P. D., Brum S. S. Adhesivity of bio-based anhydrous citric acid, tannin-citric acid and ricinoleic acid in the properties of formaldehyde-free medium density particleboard (MDP). Drv. Ind. 2020:71(3):235–242. https://doi.org/10.5552/drvind.2020.191710.5552/drvind.2020.1917
  7. [7] Zheng P., Lin Q., Li F., Ou Y., Chen N. Development and characterization of a defatted soy flour-based bio-adhesive crosslinked by 1,2,3,4-butanetetracarboxylic acid. International Journal of Adhesion and Adhesives 2017:78:148–154. https://doi.org/10.1016/j.ijadhadh.2017.06.01610.1016/j.ijadhadh.2017.06.016
  8. [8] Desai S. D., Patel J. V., Sinha V. K. Polyurethane adhesive system from biomaterial-based polyol for bonding wood. International Journal of Adhesion and Adhesives 2003:23(5):393–399. https://doi.org/10.1016/S0143-7496(03)00070-810.1016/S0143-7496(03)00070-8
  9. [9] Drelich J. W. Contact angles: From past mistakes to new developments through liquid-solid adhesion measurements. Adv. Colloid Interface Sci. 2019:267:1–14. https://doi.org/10.1016/j.cis.2019.02.00210.1016/j.cis.2019.02.00230861389
  10. [10] Huang T. et al. Fish gelatin modifications: A comprehensive review. Trends Food Sci. Technol. 2019:86:260–269. https://doi.org/10.1016/j.tifs.2019.02.04810.1016/j.tifs.2019.02.048
  11. [11] Malysheva G. V., Bodrykh N. V. Hot melt adhesives. Polymer Science Series D 2011:4:301–303. https://doi.org/10.1134/S199542121104009510.1134/S1995421211040095
  12. [12] Xu C. et al. Soy protein adhesive with bio-based epoxidized daidzein for high strength and mildew resistance. Chem. Eng. J. 2019:390:124622. https://doi.org/10.1016/j.cej.2020.12462210.1016/j.cej.2020.124622
  13. [13] Zhang Y. et al. Preparation and characterization of a soy protein-based high-performance adhesive with a hyperbranched cross-linked structure. Chem. Eng. J. 2018:354:1032–1041. https://doi.org/10.1016/j.cej.2018.08.07210.1016/j.cej.2018.08.072
  14. [14] Tarling L. Global industry review. Surrey, 2015.
  15. [15] Koral J., Ullman R., Eirich F. R. The adsorption of polyvinyl acetate. J. Phys. Chem. 1958:62(5):541–550. https://doi.org/10.1021/j150563a00710.1021/j150563a007
  16. [16] Yamaguchi M., Takatani R., Sato Y., Maeda S. Moisture-sensitive smart hot-melt adhesive from polyamide 6. SN Appl. Sci. 2020:2(9):1567. https://doi.org/10.1007/s42452-020-03400-y10.1007/s42452-020-03400-y
  17. [17] Bravo A., Hotchkiss J. H., Aeree T. E. Identification of Odor-Active Compounds Resulting from Thermal Oxidation of Polyethylene. J. Agric. Food Chem. 1992:40(10):1881–1885. https://doi.org/10.1021/jf00022a03110.1021/jf00022a031
  18. [18] Pomposo J. A., Rodríguez J., Grande H. Polypyrrole-based conducting hot melt adhesives for EMI shielding applications. Synth. Met. 1999:104(2):107–111. https://doi.org/10.1016/S0379-6779(99)00061-210.1016/S0379-6779(99)00061-2
  19. [19] Pilato L. Phenolic resins: A century of progress. 2010. https://doi.org/10.1007/978-3-642-04714-510.1007/978-3-642-04714-5
  20. [20] Zhang C., Wu Y., Xu X. U., Li Y. A. N., Feng L. I., Wu G. Synthesis of Polyisobutylene with Arylamino Terminal Group by Combination of Cationic Polymerization with Alkylation. Journal of Polymer Science Part A: Polymer Chemistry 2008:46(3):936–946. https://doi.org/10.1002/pola.2243710.1002/pola.22437
  21. [21] Capar Ö., Tabatabai M., Klee J. E., Worm M., Hartmann L., Ritter H. Fast curing of polyhydroxyurethanes: Via ring opening polyaddition of low viscosity cyclic carbonates and amines. Polym. Chem. 2020:11(43):6964–6970. https://doi.org/10.1039/D0PY01172J10.1039/D0PY01172J
  22. [22] Marques E. A. S., Magalhães D. N. M., Da Silva L. F. M. Experimental study of silicone-epoxy dual adhesive joints for high temperature aerospace applications. Materwiss. Werksttech. 2011:42(5):471–477. https://doi.org/10.1002/mawe.20110080910.1002/mawe.201100809
  23. [23] Müller M., Chotěborský R. Impact strength behaviour of structural adhesives. Agron. Res. 2016:14:1078–1087.
  24. [24] Marasinghe L., Croutxé-Barghorn C., Allonas X., Criqui A. Effect of reactive monomers on polymer structure and abrasion resistance of UV cured thin films. Prog. Org. Coatings 2017:118:22–29. https://doi.org/10.1016/j.porgcoat.2017.09.02010.1016/j.porgcoat.2017.09.020
  25. [25] Chen C. et al. Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 2020:5(9):642–666. https://doi.org/10.1038/s41578-020-0195-z10.1038/s41578-020-0195-z
  26. [26] Yang Z., Zhang X., Liu X., Guan X., Zhang C., Niu Y. Flexible and stretchable polyurethane/waterglass grouting material. Constr. Build. Mater. 2017:138:240–246. https://doi.org/10.1016/j.conbuildmat.2017.01.11310.1016/j.conbuildmat.2017.01.113
  27. [27] Corigliano P., Ragni M., Castagnetti D., Crupi V., Dragoni E., Guglielmino E. Measuring the static shear strength of anaerobic adhesives in finite thickness under high pressure. J. Adhes. 2019:97(8):783–800. https://doi.org/10.1080/00218464.2019.170427110.1080/00218464.2019.1704271
  28. [28] Thuraisingam J., Gupta A., Subramaniam M. Natural Rubber Latex (NRL) and rice starch as an alternative binder in wood composite industry. Aust. J. Basic Appl. Sci. 2016:10(17):101–106.
  29. [29] Tester R. F., Karkalas J., Qi X. Starch structure and digestibility Enzyme-Substrate relationship. Worlds. Poult. Sci. J. 2004:60(2):186–195. https://doi.org/10.1079/WPS2004001410.1079/WPS20040014
  30. [30] Suresh G., Sebastian J., Brar S. K. Waste as a Bioresource. In Waste Valorisation: Waste Streams in a Circular Economy, Lin, C., Kaur, G., Li, C., Yang, X. (eds). Wiley 2015:13–32. https://doi.org/10.1002/9781119502753.ch210.1002/9781119502753.ch2
  31. [31] Patel A., Arora N., Sartaj K., Pruthi V., Pruthi P. A. Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses. Renew. Sustain. Energy Rev. 2016:62:836–855. https://doi.org/10.1016/j.rser.2016.05.01410.1016/j.rser.2016.05.014
  32. [32] Roffael E., Behn C., Dix B. On the formaldehyde release of wood particles. Eur. J. Wood Wood Prod. 2012:70(6):911–912. https://doi.org/10.1007/s00107-012-0625-810.1007/s00107-012-0625-8
  33. [33] Ponomarenko J., Lauberts M., Dizhbite T., Lauberte L., Jurkjane V., Telysheva G. Antioxidant activity of various lignins and lignin-related phenylpropanoid units with high and low molecular weight. Holzforschung 2015:69(6):795–805. https://doi.org/10.1515/hf-2014-028010.1515/hf-2014-0280
  34. [34] Çetin N. S., Özmen N. Use of organosolv lignin in phenol-formaldehyde resins for particleboard production: II. Particleboard production and properties. Int. J. Adhes. Adhes. 2002:22(6):481–486. https://doi.org/10.1016/S0143-7496(02)00059-310.1016/S0143-7496(02)00059-3
  35. [35] Järvinen R., Rauhala H., Holopainen U., Kallio H. Differences in suberin content and composition between two varieties of potatoes (Solanum tuberosum) and effect of post-harvest storage to the composition. LWT - Food Sci. Technol. 2011:44(6):1355–1361. https://doi.org/10.1016/j.lwt.2011.02.00510.1016/j.lwt.2011.02.005
  36. [36] Sawant O., Mahale S., Ramchandran V., Nagaraj G., Bankar A. Fungal Citric acid production using waste materials: A mini-review. J. Microbiol. Biotechnol. Food Sci. 2018:8(2):821–828. https://doi.org/10.15414/jmbfs.2018.8.2.821-82810.15414/jmbfs.2018.8.2.821-828
  37. [37] Kleekayai T., Suntornsuk W. Production and characterization of chitosan obtained from Rhizopus oryzae grown on potato chip processing waste. World J. Microbiol. Biotechnol. 2011:27(5):1145–1154. https://doi.org/10.1007/s11274-010-0561-x10.1007/s11274-010-0561-x
  38. [38] Qu J., Zhao X., Liang Y., Zhang T., Ma P. X., Guo B. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 2018:183:185–199. https://doi.org/10.1016/j.biomaterials.2018.08.04410.1016/j.biomaterials.2018.08.04430172244
  39. [39] Satpute S. K., Banat I. M., Dhakephalkar P. K., Banpurkar A. G., Chopade B. A. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol. Adv. 2010:28(4):436–450. https://doi.org/10.1016/j.biotechadv.2010.02.00610.1016/j.biotechadv.2010.02.00620172021
  40. [40] Agrawal A. A., Konno K. Latex: A model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu. Rev. Ecol. Evol. Syst. 2009:40:311–331. https://doi.org/10.1146/annurev.ecolsys.110308.12030710.1146/annurev.ecolsys.110308.120307
  41. [41] Triveni Soubam and Arun Gupta. Eco-friendly natural rubber latex and modified starch-based adhesive for wood-based panels application. A review. Maejo Int. J. Energy Environ. Commun. 2021:3(1):49–53. https://doi.org/10.54279/mijeec.v3i1.24516310.54279/mijeec.v3i1.245163
  42. [42] Epping J. et al. A rubber transferase activator is necessary for natural rubber biosynthesis in dandelion. Nat. Plants 2015:1:15048. https://doi.org/10.1038/nplants.2015.4810.1038/nplants.2015.48
  43. [43] Alinejad M. et al. Lignin-Based Polyurethanes: Opportunities for Bio-Based Foams, Elastomers, Coatings and Adhesives. Polymers (Basel). 2019:11(7):1202. https://doi.org/10.3390/polym1107120210.3390/polym11071202668096131323816
  44. [44] Isikgor F. H., Becer C. R. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 2015:25:4497–4559. https://doi.org/10.1039/C5PY00263J10.1039/C5PY00263J
  45. [45] Pan X., Tian Y., Li J., Tan Q., Ren J. Bio-based polyurethane reactive hot-melt adhesives derived from isosorbide-based polyester polyols with different carbon chain lengths. Chem. Eng. Sci. 2022:264:118152. https://doi.org/10.1016/j.ces.2022.11815210.1016/j.ces.2022.118152
  46. [46] Heinrich L. A. Future opportunities for bio-based adhesives-advantages beyond renewability. Green Chemistry 2019:8:1866–1888. https://doi.org/10.1039/C8GC03746A10.1039/C8GC03746A
  47. [47] Cui S., Luo X., Li Y. Synthesis and properties of polyurethane wood adhesives derived from crude glycerol-based polyols. Int. J. Adhes. Adhes. 2017:79:67–72. https://doi.org/10.1016/j.ijadhadh.2017.04.00810.1016/j.ijadhadh.2017.04.008
  48. [48] Fahmy Y., El-Wakil N. A., El-Gendy A. A., Abou-Zeid R. E., Youssef M. A. Plant proteins as binders in cellulosic paper composites. Int. J. Biol. Macromol. 2010:47(1):82–85. https://doi.org/10.1016/j.ijbiomac.2010.03.01210.1016/j.ijbiomac.2010.03.01220361995
  49. [49] Flambeau M., Redl A., Respondek F. Proteins From Wheat: Sustainable Production and New Developments in Nutrition-Based and Functional Applications. Sustainable Protein Sources 2016:67–78. https://doi.org/10.1016/B978-0-12-802778-3.00004-410.1016/B978-0-12-802778-3.00004-4
  50. [50] Cheng H. N., He Z., Li C. H., Bland J. M., Bechtel P. J. Preparation and evaluation of catfish protein as a wood adhesive. Int. J. Polym. Anal. Charact. 2021:26(1):60–67. https://doi.org/10.1080/1023666X.2020.184436110.1080/1023666X.2020.1844361
  51. [51] Yang I., Han G. S., Ahn S. H., Choi I. G., Kim Y. H., Oh S. C. Adhesive properties of medium-density fiberboards fabricated with rapeseed flour-based adhesive resins. J. Adhes. 2014:90(4):279–295. https://doi.org/10.1080/00218464.2013.79316110.1080/00218464.2013.793161
  52. [52] Kokel A., Török B. Sustainable production of fine chemicals and materials using nontoxic renewable sources. Toxicol. Sci. 2018:161(2):214–224. https://doi.org/10.1093/toxsci/kfx21410.1093/toxsci/kfx21429045743
  53. [53] Muizniece I., Blumberga D. Thermal Conductivity of Heat Insulation Material Made from Coniferous Needles with Potato Starch Binder. Energy Procedia 2016:95:324–329. https://doi.org/10.1016/j.egypro.2016.09.01410.1016/j.egypro.2016.09.014
  54. [54] Santos J., Delgado N., Fuentes J., Fuentealba C., Vega-Lara J., García D. E. Exterior grade plywood adhesives based on pine bark polyphenols and hexamine. Ind. Crops Prod. 2018:122:340–348. https://doi.org/10.1016/j.indcrop.2018.05.08210.1016/j.indcrop.2018.05.082
  55. [55] Aristri M. A. Bio-based polyurethane resins derived from tannin: Source, synthesis, characterisation, and application. Forests 2021:12(11):f12111516. https://doi.org/10.3390/f1211151610.3390/f12111516
  56. [56] Norström E., Fogelström L., Nordqvist P., Khabbaz F., Malmström E. Xylan - A green binder for wood adhesives. Eur. Polym. J. 2015:67:483–493. https://doi.org/10.1016/j.eurpolymj.2015.02.02110.1016/j.eurpolymj.2015.02.021
  57. [57] Sini N. K., Bijwe J., Varma I. K. Thermal behaviour of bis-benzoxazines derived from renewable feed stock ‘vanillin’. Polym. Degrad. Stab. 2014:109:270–277. https://doi.org/10.1016/j.polymdegradstab.2014.07.01510.1016/j.polymdegradstab.2014.07.015
  58. [58] da Silva B. R. F. et al. Properties of cross-laminated timber bonded with an adhesive based on tannins from the bark of Mimosa tenuiflora Trees. Rev. Arvore 2022:46:1–10. https://doi.org/10.1590/1806-90882022000002010.1590/1806-908820220000020
  59. [59] Zheng D., Wang X., Zhang M., Liu Z., Ju C. Anticorrosion and lubricating properties of a fully green lubricant. Tribol. Int. 2018:130:324–333. https://doi.org/10.1016/j.triboint.2018.08.01410.1016/j.triboint.2018.08.014
  60. [60] Umemura K., Kawai S. Development of Wood-Based Materials Bonded with Citric Acid. For. Prod. J. 2015:65(1–2):38–42. https://doi.org/10.13073/FPJ-D-14-0003610.13073/FPJ-D-14-00036
  61. [61] Gadhave R. V., Mahanwar P. A., Gadekar P. T. Starch stabilized polyvinyl acetate emulsion: Review. Polym. from Renew. Resour. 2018:9(2):75–84. https://doi.org/10.1177/20412479180090020310.1177/204124791800900203
  62. [62] Samyn P. A platform for functionalization of cellulose, chitin/chitosan, alginate with polydopamine: A review on fundamentals and technical applications. International Journal of Biological Macromolecules 2021:178:71–93. https://doi.org/10.1016/j.ijbiomac.2021.02.09110.1016/j.ijbiomac.2021.02.09133609581
  63. [63] Ferdosian F., Pan Z., Gao G., Zhao B. Bio-based adhesives and evaluation for wood composites application. Polymers 2017:9(2):polym9020070. https://doi.org/10.3390/polym902007010.3390/polym9020070643240530970748
  64. [64] Monroy Y., Rivero S., García M. A. Sustainable panels design based on modified cassava starch bioadhesives and wood processing byproducts. Ind. Crops Prod. 2019:137:171–179. https://doi.org/10.1016/j.indcrop.2019.04.06210.1016/j.indcrop.2019.04.062
  65. [65] Nordqvist P., Lawther M., Malmström E., Khabbaz F. Adhesive properties of wheat gluten after enzymatic hydrolysis or heat treatment. A comparative study. Ind. Crops Prod. 2012:38(1):139–145. https://doi.org/10.1016/j.indcrop.2012.01.02110.1016/j.indcrop.2012.01.021
  66. [66] Wu T. Y., Mohammad A. W., Jahim J. M., Anuar N. Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes. Journal of Environmental Management 2010:91(7):1467–1490. https://doi.org/10.1016/j.jenvman.2010.02.00810.1016/j.jenvman.2010.02.00820231054
  67. [67] Ningsi D. W., Suhasman, Saad S. Characteristic of Chitosan Adhesive from Shell Shrimp Litopenaeus vannamei and Their Application for Producing Particleboard. in IOP Conference Series: Materials Science and Engineering 2019:593(1):012015. https://doi.org/10.1088/1757-899X/593/1/01201510.1088/1757-899X/593/1/012015
  68. [68] Tokura S., Tamura H. Chitin and Chitosan. Compr. Glycosci. From Chem. to Syst. Biol. 2007:2–4:449–475. https://doi.org/10.1016/B978-044451967-2/00127-610.1016/B978-044451967-2/00127-6
  69. [69] Hou L., Majumder E. L. W. Potential for and distribution of enzymatic biodegradation of polystyrene by environmental microorganisms. Materials (Basel) 2021:14(3):ma14030503. https://doi.org/10.3390/ma1403050310.3390/ma14030503786451633494256
  70. [70] Superti V., Forman T. V., Houmani C. Recycling thermal insulation materials: A case study on more circular management of expanded polystyrene and stonewool in switzerland and research agenda. Resources 2021:10(10):10100104. https://doi.org/10.3390/resources1010010410.3390/resources10100104
  71. [71] United Soybean Board. NU Green soya® particleboard scores environmental certifications. 2016. [Online]. [Accessed: 15.11.2022]. Available: https://soynewuses.org/case-study/nu-green-soya-particleboard-scores-environmental-certifications/
  72. [72] Solenis. SOYADTM Adhesive Technology. 2022. [Online]. [Accessed: 15.11.2022]. Available: https://www.solenis.com/en/research-and-development/innovations/soyad-adhesive-technology
DOI: https://doi.org/10.2478/rtuect-2022-0102 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 1350 - 1360
Published on: Dec 30, 2022
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Ilze Vamza, Guntars Krigers, Karlis Valters, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.