References
- [1] De Almeida T. H., de Sousa A. M., Martins A. S. M., Christoforo A. L., de Almeida D. H., Lahr F. A. R. Effect of service temperature on shear strength of Pinus wood for roof structures. Acta Scientiarum. Technology 2018:40. https://doi.org/10.4025/actascitechnol.v40i1.3091310.4025/actascitechnol.v40i1.30913
- [2] Ferreira A. M. et al. Biosourced binder for wood particleboards based on spent sulfite liquor and wheat flour. Polymers (Basel). 2018:10(10). https://doi.org/10.3390/polym1010107010.3390/polym10101070640394130960995
- [3] Irle M., Thoemen H., Sernek M. Wood-based panel technology. An Introduction for Specialists. Brunel University Press, 2010.
- [4] Salem M. Z. M., Böhm M., Barcík Š., Beránková J. Emisija formaldehida iz drvnih ploča s različitim ljepilima na Bazi formaldehida. (Formaldehyde emission from wood panels with different formaldehyde-based adhesives). Drv. Ind. 2011:62(3):177–183. https://doi.org/10.5552/drind.2011.1102 (In Croatian).10.5552/drind.2011.1102
- [5] Solt P. et al. Technological performance of formaldehyde-free adhesive alternatives for particleboard industry. Int. J. Adhes. Adhes. 2019:94:99–131. https://doi.org/10.1016/j.ijadhadh.2019.04.00710.1016/j.ijadhadh.2019.04.007
- [6] Teixeira D. E., Pereira D. D. C., Nakamura A. P. D., Brum S. S. Adhesivity of bio-based anhydrous citric acid, tannin-citric acid and ricinoleic acid in the properties of formaldehyde-free medium density particleboard (MDP). Drv. Ind. 2020:71(3):235–242. https://doi.org/10.5552/drvind.2020.191710.5552/drvind.2020.1917
- [7] Zheng P., Lin Q., Li F., Ou Y., Chen N. Development and characterization of a defatted soy flour-based bio-adhesive crosslinked by 1,2,3,4-butanetetracarboxylic acid. International Journal of Adhesion and Adhesives 2017:78:148–154. https://doi.org/10.1016/j.ijadhadh.2017.06.01610.1016/j.ijadhadh.2017.06.016
- [8] Desai S. D., Patel J. V., Sinha V. K. Polyurethane adhesive system from biomaterial-based polyol for bonding wood. International Journal of Adhesion and Adhesives 2003:23(5):393–399. https://doi.org/10.1016/S0143-7496(03)00070-810.1016/S0143-7496(03)00070-8
- [9] Drelich J. W. Contact angles: From past mistakes to new developments through liquid-solid adhesion measurements. Adv. Colloid Interface Sci. 2019:267:1–14. https://doi.org/10.1016/j.cis.2019.02.00210.1016/j.cis.2019.02.00230861389
- [10] Huang T. et al. Fish gelatin modifications: A comprehensive review. Trends Food Sci. Technol. 2019:86:260–269. https://doi.org/10.1016/j.tifs.2019.02.04810.1016/j.tifs.2019.02.048
- [11] Malysheva G. V., Bodrykh N. V. Hot melt adhesives. Polymer Science Series D 2011:4:301–303. https://doi.org/10.1134/S199542121104009510.1134/S1995421211040095
- [12] Xu C. et al. Soy protein adhesive with bio-based epoxidized daidzein for high strength and mildew resistance. Chem. Eng. J. 2019:390:124622. https://doi.org/10.1016/j.cej.2020.12462210.1016/j.cej.2020.124622
- [13] Zhang Y. et al. Preparation and characterization of a soy protein-based high-performance adhesive with a hyperbranched cross-linked structure. Chem. Eng. J. 2018:354:1032–1041. https://doi.org/10.1016/j.cej.2018.08.07210.1016/j.cej.2018.08.072
- [14] Tarling L. Global industry review. Surrey, 2015.
- [15] Koral J., Ullman R., Eirich F. R. The adsorption of polyvinyl acetate. J. Phys. Chem. 1958:62(5):541–550. https://doi.org/10.1021/j150563a00710.1021/j150563a007
- [16] Yamaguchi M., Takatani R., Sato Y., Maeda S. Moisture-sensitive smart hot-melt adhesive from polyamide 6. SN Appl. Sci. 2020:2(9):1567. https://doi.org/10.1007/s42452-020-03400-y10.1007/s42452-020-03400-y
- [17] Bravo A., Hotchkiss J. H., Aeree T. E. Identification of Odor-Active Compounds Resulting from Thermal Oxidation of Polyethylene. J. Agric. Food Chem. 1992:40(10):1881–1885. https://doi.org/10.1021/jf00022a03110.1021/jf00022a031
- [18] Pomposo J. A., Rodríguez J., Grande H. Polypyrrole-based conducting hot melt adhesives for EMI shielding applications. Synth. Met. 1999:104(2):107–111. https://doi.org/10.1016/S0379-6779(99)00061-210.1016/S0379-6779(99)00061-2
- [19] Pilato L. Phenolic resins: A century of progress. 2010. https://doi.org/10.1007/978-3-642-04714-510.1007/978-3-642-04714-5
- [20] Zhang C., Wu Y., Xu X. U., Li Y. A. N., Feng L. I., Wu G. Synthesis of Polyisobutylene with Arylamino Terminal Group by Combination of Cationic Polymerization with Alkylation. Journal of Polymer Science Part A: Polymer Chemistry 2008:46(3):936–946. https://doi.org/10.1002/pola.2243710.1002/pola.22437
- [21] Capar Ö., Tabatabai M., Klee J. E., Worm M., Hartmann L., Ritter H. Fast curing of polyhydroxyurethanes: Via ring opening polyaddition of low viscosity cyclic carbonates and amines. Polym. Chem. 2020:11(43):6964–6970. https://doi.org/10.1039/D0PY01172J10.1039/D0PY01172J
- [22] Marques E. A. S., Magalhães D. N. M., Da Silva L. F. M. Experimental study of silicone-epoxy dual adhesive joints for high temperature aerospace applications. Materwiss. Werksttech. 2011:42(5):471–477. https://doi.org/10.1002/mawe.20110080910.1002/mawe.201100809
- [23] Müller M., Chotěborský R. Impact strength behaviour of structural adhesives. Agron. Res. 2016:14:1078–1087.
- [24] Marasinghe L., Croutxé-Barghorn C., Allonas X., Criqui A. Effect of reactive monomers on polymer structure and abrasion resistance of UV cured thin films. Prog. Org. Coatings 2017:118:22–29. https://doi.org/10.1016/j.porgcoat.2017.09.02010.1016/j.porgcoat.2017.09.020
- [25] Chen C. et al. Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 2020:5(9):642–666. https://doi.org/10.1038/s41578-020-0195-z10.1038/s41578-020-0195-z
- [26] Yang Z., Zhang X., Liu X., Guan X., Zhang C., Niu Y. Flexible and stretchable polyurethane/waterglass grouting material. Constr. Build. Mater. 2017:138:240–246. https://doi.org/10.1016/j.conbuildmat.2017.01.11310.1016/j.conbuildmat.2017.01.113
- [27] Corigliano P., Ragni M., Castagnetti D., Crupi V., Dragoni E., Guglielmino E. Measuring the static shear strength of anaerobic adhesives in finite thickness under high pressure. J. Adhes. 2019:97(8):783–800. https://doi.org/10.1080/00218464.2019.170427110.1080/00218464.2019.1704271
- [28] Thuraisingam J., Gupta A., Subramaniam M. Natural Rubber Latex (NRL) and rice starch as an alternative binder in wood composite industry. Aust. J. Basic Appl. Sci. 2016:10(17):101–106.
- [29] Tester R. F., Karkalas J., Qi X. Starch structure and digestibility Enzyme-Substrate relationship. Worlds. Poult. Sci. J. 2004:60(2):186–195. https://doi.org/10.1079/WPS2004001410.1079/WPS20040014
- [30] Suresh G., Sebastian J., Brar S. K. Waste as a Bioresource. In Waste Valorisation: Waste Streams in a Circular Economy, Lin, C., Kaur, G., Li, C., Yang, X. (eds). Wiley 2015:13–32. https://doi.org/10.1002/9781119502753.ch210.1002/9781119502753.ch2
- [31] Patel A., Arora N., Sartaj K., Pruthi V., Pruthi P. A. Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses. Renew. Sustain. Energy Rev. 2016:62:836–855. https://doi.org/10.1016/j.rser.2016.05.01410.1016/j.rser.2016.05.014
- [32] Roffael E., Behn C., Dix B. On the formaldehyde release of wood particles. Eur. J. Wood Wood Prod. 2012:70(6):911–912. https://doi.org/10.1007/s00107-012-0625-810.1007/s00107-012-0625-8
- [33] Ponomarenko J., Lauberts M., Dizhbite T., Lauberte L., Jurkjane V., Telysheva G. Antioxidant activity of various lignins and lignin-related phenylpropanoid units with high and low molecular weight. Holzforschung 2015:69(6):795–805. https://doi.org/10.1515/hf-2014-028010.1515/hf-2014-0280
- [34] Çetin N. S., Özmen N. Use of organosolv lignin in phenol-formaldehyde resins for particleboard production: II. Particleboard production and properties. Int. J. Adhes. Adhes. 2002:22(6):481–486. https://doi.org/10.1016/S0143-7496(02)00059-310.1016/S0143-7496(02)00059-3
- [35] Järvinen R., Rauhala H., Holopainen U., Kallio H. Differences in suberin content and composition between two varieties of potatoes (Solanum tuberosum) and effect of post-harvest storage to the composition. LWT - Food Sci. Technol. 2011:44(6):1355–1361. https://doi.org/10.1016/j.lwt.2011.02.00510.1016/j.lwt.2011.02.005
- [36] Sawant O., Mahale S., Ramchandran V., Nagaraj G., Bankar A. Fungal Citric acid production using waste materials: A mini-review. J. Microbiol. Biotechnol. Food Sci. 2018:8(2):821–828. https://doi.org/10.15414/jmbfs.2018.8.2.821-82810.15414/jmbfs.2018.8.2.821-828
- [37] Kleekayai T., Suntornsuk W. Production and characterization of chitosan obtained from Rhizopus oryzae grown on potato chip processing waste. World J. Microbiol. Biotechnol. 2011:27(5):1145–1154. https://doi.org/10.1007/s11274-010-0561-x10.1007/s11274-010-0561-x
- [38] Qu J., Zhao X., Liang Y., Zhang T., Ma P. X., Guo B. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 2018:183:185–199. https://doi.org/10.1016/j.biomaterials.2018.08.04410.1016/j.biomaterials.2018.08.04430172244
- [39] Satpute S. K., Banat I. M., Dhakephalkar P. K., Banpurkar A. G., Chopade B. A. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol. Adv. 2010:28(4):436–450. https://doi.org/10.1016/j.biotechadv.2010.02.00610.1016/j.biotechadv.2010.02.00620172021
- [40] Agrawal A. A., Konno K. Latex: A model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu. Rev. Ecol. Evol. Syst. 2009:40:311–331. https://doi.org/10.1146/annurev.ecolsys.110308.12030710.1146/annurev.ecolsys.110308.120307
- [41] Triveni Soubam and Arun Gupta. Eco-friendly natural rubber latex and modified starch-based adhesive for wood-based panels application. A review. Maejo Int. J. Energy Environ. Commun. 2021:3(1):49–53. https://doi.org/10.54279/mijeec.v3i1.24516310.54279/mijeec.v3i1.245163
- [42] Epping J. et al. A rubber transferase activator is necessary for natural rubber biosynthesis in dandelion. Nat. Plants 2015:1:15048. https://doi.org/10.1038/nplants.2015.4810.1038/nplants.2015.48
- [43] Alinejad M. et al. Lignin-Based Polyurethanes: Opportunities for Bio-Based Foams, Elastomers, Coatings and Adhesives. Polymers (Basel). 2019:11(7):1202. https://doi.org/10.3390/polym1107120210.3390/polym11071202668096131323816
- [44] Isikgor F. H., Becer C. R. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 2015:25:4497–4559. https://doi.org/10.1039/C5PY00263J10.1039/C5PY00263J
- [45] Pan X., Tian Y., Li J., Tan Q., Ren J. Bio-based polyurethane reactive hot-melt adhesives derived from isosorbide-based polyester polyols with different carbon chain lengths. Chem. Eng. Sci. 2022:264:118152. https://doi.org/10.1016/j.ces.2022.11815210.1016/j.ces.2022.118152
- [46] Heinrich L. A. Future opportunities for bio-based adhesives-advantages beyond renewability. Green Chemistry 2019:8:1866–1888. https://doi.org/10.1039/C8GC03746A10.1039/C8GC03746A
- [47] Cui S., Luo X., Li Y. Synthesis and properties of polyurethane wood adhesives derived from crude glycerol-based polyols. Int. J. Adhes. Adhes. 2017:79:67–72. https://doi.org/10.1016/j.ijadhadh.2017.04.00810.1016/j.ijadhadh.2017.04.008
- [48] Fahmy Y., El-Wakil N. A., El-Gendy A. A., Abou-Zeid R. E., Youssef M. A. Plant proteins as binders in cellulosic paper composites. Int. J. Biol. Macromol. 2010:47(1):82–85. https://doi.org/10.1016/j.ijbiomac.2010.03.01210.1016/j.ijbiomac.2010.03.01220361995
- [49] Flambeau M., Redl A., Respondek F. Proteins From Wheat: Sustainable Production and New Developments in Nutrition-Based and Functional Applications. Sustainable Protein Sources 2016:67–78. https://doi.org/10.1016/B978-0-12-802778-3.00004-410.1016/B978-0-12-802778-3.00004-4
- [50] Cheng H. N., He Z., Li C. H., Bland J. M., Bechtel P. J. Preparation and evaluation of catfish protein as a wood adhesive. Int. J. Polym. Anal. Charact. 2021:26(1):60–67. https://doi.org/10.1080/1023666X.2020.184436110.1080/1023666X.2020.1844361
- [51] Yang I., Han G. S., Ahn S. H., Choi I. G., Kim Y. H., Oh S. C. Adhesive properties of medium-density fiberboards fabricated with rapeseed flour-based adhesive resins. J. Adhes. 2014:90(4):279–295. https://doi.org/10.1080/00218464.2013.79316110.1080/00218464.2013.793161
- [52] Kokel A., Török B. Sustainable production of fine chemicals and materials using nontoxic renewable sources. Toxicol. Sci. 2018:161(2):214–224. https://doi.org/10.1093/toxsci/kfx21410.1093/toxsci/kfx21429045743
- [53] Muizniece I., Blumberga D. Thermal Conductivity of Heat Insulation Material Made from Coniferous Needles with Potato Starch Binder. Energy Procedia 2016:95:324–329. https://doi.org/10.1016/j.egypro.2016.09.01410.1016/j.egypro.2016.09.014
- [54] Santos J., Delgado N., Fuentes J., Fuentealba C., Vega-Lara J., García D. E. Exterior grade plywood adhesives based on pine bark polyphenols and hexamine. Ind. Crops Prod. 2018:122:340–348. https://doi.org/10.1016/j.indcrop.2018.05.08210.1016/j.indcrop.2018.05.082
- [55] Aristri M. A. Bio-based polyurethane resins derived from tannin: Source, synthesis, characterisation, and application. Forests 2021:12(11):f12111516. https://doi.org/10.3390/f1211151610.3390/f12111516
- [56] Norström E., Fogelström L., Nordqvist P., Khabbaz F., Malmström E. Xylan - A green binder for wood adhesives. Eur. Polym. J. 2015:67:483–493. https://doi.org/10.1016/j.eurpolymj.2015.02.02110.1016/j.eurpolymj.2015.02.021
- [57] Sini N. K., Bijwe J., Varma I. K. Thermal behaviour of bis-benzoxazines derived from renewable feed stock ‘vanillin’. Polym. Degrad. Stab. 2014:109:270–277. https://doi.org/10.1016/j.polymdegradstab.2014.07.01510.1016/j.polymdegradstab.2014.07.015
- [58] da Silva B. R. F. et al. Properties of cross-laminated timber bonded with an adhesive based on tannins from the bark of Mimosa tenuiflora Trees. Rev. Arvore 2022:46:1–10. https://doi.org/10.1590/1806-90882022000002010.1590/1806-908820220000020
- [59] Zheng D., Wang X., Zhang M., Liu Z., Ju C. Anticorrosion and lubricating properties of a fully green lubricant. Tribol. Int. 2018:130:324–333. https://doi.org/10.1016/j.triboint.2018.08.01410.1016/j.triboint.2018.08.014
- [60] Umemura K., Kawai S. Development of Wood-Based Materials Bonded with Citric Acid. For. Prod. J. 2015:65(1–2):38–42. https://doi.org/10.13073/FPJ-D-14-0003610.13073/FPJ-D-14-00036
- [61] Gadhave R. V., Mahanwar P. A., Gadekar P. T. Starch stabilized polyvinyl acetate emulsion: Review. Polym. from Renew. Resour. 2018:9(2):75–84. https://doi.org/10.1177/20412479180090020310.1177/204124791800900203
- [62] Samyn P. A platform for functionalization of cellulose, chitin/chitosan, alginate with polydopamine: A review on fundamentals and technical applications. International Journal of Biological Macromolecules 2021:178:71–93. https://doi.org/10.1016/j.ijbiomac.2021.02.09110.1016/j.ijbiomac.2021.02.09133609581
- [63] Ferdosian F., Pan Z., Gao G., Zhao B. Bio-based adhesives and evaluation for wood composites application. Polymers 2017:9(2):polym9020070. https://doi.org/10.3390/polym902007010.3390/polym9020070643240530970748
- [64] Monroy Y., Rivero S., García M. A. Sustainable panels design based on modified cassava starch bioadhesives and wood processing byproducts. Ind. Crops Prod. 2019:137:171–179. https://doi.org/10.1016/j.indcrop.2019.04.06210.1016/j.indcrop.2019.04.062
- [65] Nordqvist P., Lawther M., Malmström E., Khabbaz F. Adhesive properties of wheat gluten after enzymatic hydrolysis or heat treatment. A comparative study. Ind. Crops Prod. 2012:38(1):139–145. https://doi.org/10.1016/j.indcrop.2012.01.02110.1016/j.indcrop.2012.01.021
- [66] Wu T. Y., Mohammad A. W., Jahim J. M., Anuar N. Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes. Journal of Environmental Management 2010:91(7):1467–1490. https://doi.org/10.1016/j.jenvman.2010.02.00810.1016/j.jenvman.2010.02.00820231054
- [67] Ningsi D. W., Suhasman, Saad S. Characteristic of Chitosan Adhesive from Shell Shrimp Litopenaeus vannamei and Their Application for Producing Particleboard. in IOP Conference Series: Materials Science and Engineering 2019:593(1):012015. https://doi.org/10.1088/1757-899X/593/1/01201510.1088/1757-899X/593/1/012015
- [68] Tokura S., Tamura H. Chitin and Chitosan. Compr. Glycosci. From Chem. to Syst. Biol. 2007:2–4:449–475. https://doi.org/10.1016/B978-044451967-2/00127-610.1016/B978-044451967-2/00127-6
- [69] Hou L., Majumder E. L. W. Potential for and distribution of enzymatic biodegradation of polystyrene by environmental microorganisms. Materials (Basel) 2021:14(3):ma14030503. https://doi.org/10.3390/ma1403050310.3390/ma14030503786451633494256
- [70] Superti V., Forman T. V., Houmani C. Recycling thermal insulation materials: A case study on more circular management of expanded polystyrene and stonewool in switzerland and research agenda. Resources 2021:10(10):10100104. https://doi.org/10.3390/resources1010010410.3390/resources10100104
- [71] United Soybean Board. NU Green soya® particleboard scores environmental certifications. 2016. [Online]. [Accessed: 15.11.2022]. Available: https://soynewuses.org/case-study/nu-green-soya-particleboard-scores-environmental-certifications/
- [72] Solenis. SOYADTM Adhesive Technology. 2022. [Online]. [Accessed: 15.11.2022]. Available: https://www.solenis.com/en/research-and-development/innovations/soyad-adhesive-technology