References
- [1] Kamar K. A. M., Hamid Z. A. Sustainable construction and green building: The case of Malaysia. WIT Trans. Ecol. Environ. 2012:167:15–22. https://doi.org/10.2495/ST11002110.2495/ST110021
- [2] Department of Statistics Malaysia. 2016 [Online]. [Accessed 14.08.2022]. Available: https://www.statistics.gov.my
- [3] Samaneh Z., et al. Environmental Impacts Assessment on Construction Sites. Construction Research Congress 2012. 2021:1750–1759. https://doi.org/doi:10.1061/9780784412329.17610.1061/9780784412329.176
- [4] Kuppusamy S., et al. Implementation of green building materials in construction industry in Johor Bahru, Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2019:268(1):012006. https://doi.org/10.1088/1755-1315/268/1/01200610.1088/1755-1315/268/1/012006
- [5] Sandanayake M., et al. Current sustainable trends of using waste materials in concrete—a decade review. Sustain. 2020:12(22):1–38. https://doi.org/10.3390/su1222962210.3390/su12229622
- [6] Bejan G., et al. Lightweight concrete with waste – Review. Procedia Manuf. 2020:46:136–143. https://doi.org/10.1016/j.promfg.2020.03.02110.1016/j.promfg.2020.03.021
- [7] GA Circular. Full Circle: Accelerating the Circular Economy for Post-Consumer PET Bottles in Southeast Asia. Singapore: GA Circular, 2019.
- [8] Iucolano F., et al. Recycled plastic aggregate in mortars composition: Effect on physical and mechanical properties. Mater. Des. 2013:52:916–922. https://doi.org/10.1016/j.matdes.2013.06.02510.1016/j.matdes.2013.06.025
- [9] Saikia N., De Brito J. Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate. Constr. Build. Mater. 2014:52:236–244. https://doi.org/10.1016/j.conbuildmat.2013.11.04910.1016/j.conbuildmat.2013.11.049
- [10] Binici H., Aksogan O. Eco-friendly insulation material production with waste olive seeds, ground PVC and wood chips. J. Build. Eng. 2016:5:260–266. https://doi.org/10.1016/j.jobe.2016.01.00810.1016/j.jobe.2016.01.008
- [11] Shanmugapriya M., Santhi M. H. Strength and Chloride Permeable Properties of Concrete with High Density Polyethylene Wastes. Int. J. Chem. Sci. 2017:15(1):10–17.
- [12] Li X., Ling T.-C., Hung Mo K. Functions and impacts of plastic/rubber wastes as eco-friendly aggregate in concrete – A review. Constr. Build. Mater. 2020:240:117869. https://doi.org/10.1016/j.conbuildmat.2019.11786910.1016/j.conbuildmat.2019.117869
- [13] Kamaruddin M. A., et al. Potential use of Plastic Waste as Construction Materials : Recent Progress and Future Prospect. IOP Conf. Ser. Mater. Sci. Eng. 2017:267:1–10. https://doi.org/10.1088/1757-899X/267/1/01201110.1088/1757-899X/267/1/012011
- [14] Záleská M., et al. Structural, mechanical and hygrothermal properties of lightweight concrete based on the application of waste plastics. Constr. Build. Mater. 2018:180:1–11. https://doi.org/10.1016/j.conbuildmat.2018.05.25010.1016/j.conbuildmat.2018.05.250
- [15] Dixon D. E., et al. Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (ACI 211.1-91). Farmington Hills: ACI, 1991.
- [16] BS 3148. Methods of Test for Water for Making Concrete (including notes on the suitability of the water). London: British Standards Institution, 1980.
- [17] Rahmani E., et al. On the mechanical properties of concrete containing waste PET particles. Constr. Build. Mater. 2013:47:1302–1308. https://doi.org/10.1016/j.conbuildmat.2013.06.04110.1016/j.conbuildmat.2013.06.041
- [18] Osubor S. O., et al. Effect of Flaky Plastic Particle Size and Volume Used as Partial Replacement of Gravel on Compressive Strength and Density of Concrete Mix. J. Environ. Prot. 2019:10(6):711–721. https://doi.org/10.4236/jep.2019.10604210.4236/jep.2019.106042
- [19] Lee Z. H., et al. Modification of Waste Aggregate PET for Improving the Concrete Properties. Adv. Civ. Eng. 2019:2019:6942052. https://doi.org/10.1155/2019/694205210.1155/2019/6942052
- [20] Ahmed T., Daoud O. M. Influence of Polypropylene Fibres on Concrete Properties. IOSR J. Mech. Civ. Eng. 2016:13:9–20.10.9790/1684-1305060920
- [21] Yap S. P., et al. Flexural toughness characteristics of steel-polypropylene hybrid fibre-reinforced oil palm shell concrete. Mater. Des. 2014:57:652–659. https://doi.org/10.1016/j.matdes.2014.01.00410.1016/j.matdes.2014.01.004
- [22] BS EN 12350-2:2009. Testing fresh concrete - Slump test. London: British Standards Institution, 2009.
- [23] Hasan A., Maroof N., Ibrahim Y. Effects of Polypropylene Fiber Content on Strength and Workability Properties of Concrete. Polytech. J. 2019:9:7–12. https://doi.org/10.25156/ptj.v9n1y2019.pp7-1210.25156/ptj.v9n1y2019.pp7-12
- [24] Ahmed T. W., Ali A. A. M., Zidan R. S. Properties of high strength polypropylene fiber concrete containing recycled aggregate. Constr. Build. Mater. 2020:241:118010. https://doi.org/10.1016/j.conbuildmat.2020.11801010.1016/j.conbuildmat.2020.118010