Have a personal or library account? Click to login
The Performance of Lightweight Concrete with Recycled Polyethylene Terephthalate and Polypropylene as Demising Wall Cover

The Performance of Lightweight Concrete with Recycled Polyethylene Terephthalate and Polypropylene as Demising Wall

Open Access
|Dec 2022

References

  1. [1] Kamar K. A. M., Hamid Z. A. Sustainable construction and green building: The case of Malaysia. WIT Trans. Ecol. Environ. 2012:167:15–22. https://doi.org/10.2495/ST11002110.2495/ST110021
  2. [2] Department of Statistics Malaysia. 2016 [Online]. [Accessed 14.08.2022]. Available: https://www.statistics.gov.my
  3. [3] Samaneh Z., et al. Environmental Impacts Assessment on Construction Sites. Construction Research Congress 2012. 2021:1750–1759. https://doi.org/doi:10.1061/9780784412329.17610.1061/9780784412329.176
  4. [4] Kuppusamy S., et al. Implementation of green building materials in construction industry in Johor Bahru, Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2019:268(1):012006. https://doi.org/10.1088/1755-1315/268/1/01200610.1088/1755-1315/268/1/012006
  5. [5] Sandanayake M., et al. Current sustainable trends of using waste materials in concrete—a decade review. Sustain. 2020:12(22):1–38. https://doi.org/10.3390/su1222962210.3390/su12229622
  6. [6] Bejan G., et al. Lightweight concrete with waste – Review. Procedia Manuf. 2020:46:136–143. https://doi.org/10.1016/j.promfg.2020.03.02110.1016/j.promfg.2020.03.021
  7. [7] GA Circular. Full Circle: Accelerating the Circular Economy for Post-Consumer PET Bottles in Southeast Asia. Singapore: GA Circular, 2019.
  8. [8] Iucolano F., et al. Recycled plastic aggregate in mortars composition: Effect on physical and mechanical properties. Mater. Des. 2013:52:916–922. https://doi.org/10.1016/j.matdes.2013.06.02510.1016/j.matdes.2013.06.025
  9. [9] Saikia N., De Brito J. Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate. Constr. Build. Mater. 2014:52:236–244. https://doi.org/10.1016/j.conbuildmat.2013.11.04910.1016/j.conbuildmat.2013.11.049
  10. [10] Binici H., Aksogan O. Eco-friendly insulation material production with waste olive seeds, ground PVC and wood chips. J. Build. Eng. 2016:5:260–266. https://doi.org/10.1016/j.jobe.2016.01.00810.1016/j.jobe.2016.01.008
  11. [11] Shanmugapriya M., Santhi M. H. Strength and Chloride Permeable Properties of Concrete with High Density Polyethylene Wastes. Int. J. Chem. Sci. 2017:15(1):10–17.
  12. [12] Li X., Ling T.-C., Hung Mo K. Functions and impacts of plastic/rubber wastes as eco-friendly aggregate in concrete – A review. Constr. Build. Mater. 2020:240:117869. https://doi.org/10.1016/j.conbuildmat.2019.11786910.1016/j.conbuildmat.2019.117869
  13. [13] Kamaruddin M. A., et al. Potential use of Plastic Waste as Construction Materials : Recent Progress and Future Prospect. IOP Conf. Ser. Mater. Sci. Eng. 2017:267:1–10. https://doi.org/10.1088/1757-899X/267/1/01201110.1088/1757-899X/267/1/012011
  14. [14] Záleská M., et al. Structural, mechanical and hygrothermal properties of lightweight concrete based on the application of waste plastics. Constr. Build. Mater. 2018:180:1–11. https://doi.org/10.1016/j.conbuildmat.2018.05.25010.1016/j.conbuildmat.2018.05.250
  15. [15] Dixon D. E., et al. Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (ACI 211.1-91). Farmington Hills: ACI, 1991.
  16. [16] BS 3148. Methods of Test for Water for Making Concrete (including notes on the suitability of the water). London: British Standards Institution, 1980.
  17. [17] Rahmani E., et al. On the mechanical properties of concrete containing waste PET particles. Constr. Build. Mater. 2013:47:1302–1308. https://doi.org/10.1016/j.conbuildmat.2013.06.04110.1016/j.conbuildmat.2013.06.041
  18. [18] Osubor S. O., et al. Effect of Flaky Plastic Particle Size and Volume Used as Partial Replacement of Gravel on Compressive Strength and Density of Concrete Mix. J. Environ. Prot. 2019:10(6):711–721. https://doi.org/10.4236/jep.2019.10604210.4236/jep.2019.106042
  19. [19] Lee Z. H., et al. Modification of Waste Aggregate PET for Improving the Concrete Properties. Adv. Civ. Eng. 2019:2019:6942052. https://doi.org/10.1155/2019/694205210.1155/2019/6942052
  20. [20] Ahmed T., Daoud O. M. Influence of Polypropylene Fibres on Concrete Properties. IOSR J. Mech. Civ. Eng. 2016:13:9–20.10.9790/1684-1305060920
  21. [21] Yap S. P., et al. Flexural toughness characteristics of steel-polypropylene hybrid fibre-reinforced oil palm shell concrete. Mater. Des. 2014:57:652–659. https://doi.org/10.1016/j.matdes.2014.01.00410.1016/j.matdes.2014.01.004
  22. [22] BS EN 12350-2:2009. Testing fresh concrete - Slump test. London: British Standards Institution, 2009.
  23. [23] Hasan A., Maroof N., Ibrahim Y. Effects of Polypropylene Fiber Content on Strength and Workability Properties of Concrete. Polytech. J. 2019:9:7–12. https://doi.org/10.25156/ptj.v9n1y2019.pp7-1210.25156/ptj.v9n1y2019.pp7-12
  24. [24] Ahmed T. W., Ali A. A. M., Zidan R. S. Properties of high strength polypropylene fiber concrete containing recycled aggregate. Constr. Build. Mater. 2020:241:118010. https://doi.org/10.1016/j.conbuildmat.2020.11801010.1016/j.conbuildmat.2020.118010
DOI: https://doi.org/10.2478/rtuect-2022-0100 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 1323 - 1336
Published on: Dec 30, 2022
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Lek Heng Chan, Zalena Abdul Aziz, Muhamad Azhar bin Ghazali, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.