References
- [1] Global Data. Global construction industry set to grow by 5.2% in 2021, according to GlobalData. [Online]. [Accessed: 10.10.2022]. Available: https://www.globaldata.com/media/construction/global-construction-industry-set-grow-5-2-2021according-globaldata/#:~:text=Following%20the%20historic%20collapse%20in,leading%20data%20and%20a nalytics%20company
- [2] European Commission. Delivering the European. 2021.
- [3] Felseghi R.-A., Bolboacă A. R., Raboaca M.-S., Aşchilean I. Hybrid Energy Systems for Power of Sustainable Buildings. Case Study: A Renewable Energy Based on-Site Green Electricity Production. Comprehensive Renewable Energy 2022:4:420–436. https://doi.org/10.1016/B978-0-12-819727-1.00037-610.1016/B978-0-12-819727-1.00037-6
- [4] Luo Y., Zhang L., Bozlar M., Liu Z., Guo H., Meggers F. Active building envelope systems toward renewable and sustainable energy. Renewable and Sustainable Energy Reviews 2019:104:470–491. https://doi.org/10.1016/j.rser.2019.01.00510.1016/j.rser.2019.01.005
- [5] Vassiliades C., Agathokleous R., Barone G., Forzano C., Giuzio G. F., Palombo A., Buonomano A., Kalogirou S. Building integration of active solar energy systems: A review of geometrical and architectural characteristics. Renewable and Sustainable Energy Reviews 2022:164:112482. https://doi.org/10.1016/j.rser.2022.11248210.1016/j.rser.2022.112482
- [6] Lyden A., Brown C. S., Kolo I., Falcone G., Friedrich D. Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches. Renewable and Sustainable Energy Reviews 2022:167:112760. https://doi.org/10.1016/j.rser.2022.11276010.1016/j.rser.2022.112760
- [7] Santos José J. C. S., Palacio José C. E., Reyes Arnaldo M. M., Carvalho M., Freire A. J. R., Barone M. A. Concentrating Solar Power. Advances in Renewable Energies and Power Technologies 2018:1:373–402. https://doi.org/10.1016/B978-0-12-812959-3.00012-510.1016/B978-0-12-812959-3.00012-5
- [8] Weiss W., Spörk-Dür M. Solar Heat World 2022. Global Market Development and Trends 2021. Detailed Market Figures 2020. https://doi.org/10.18777/ieashc-shw-2021-000110.18777/ieashc-shw-2021-0001
- [9] Sarbu I., Sebarchievici C. A comprehensive review of thermal energy storage. Sustainability (Switzerland). 2018:10(1). https://doi.org/10.3390/su1001019110.3390/su10010191
- [10] Sari A.. Thermal Energy Storage and Applications Using Phase Change Materials. 3rd International Turkic World Conference on Chemical Sciences and Technologies. 2017.
- [11] De Gracia A., Cabeza L. F. Phase change materials and thermal energy storage for buildings. Energy and Buildings 2015:103:414–419. https://doi.org/10.1016/j.enbuild.2015.06.00710.1016/j.enbuild.2015.06.007
- [12] Saffari M., Roe C., Finn D. P. Improving the building energy flexibility using PCM-enhanced envelopes. Applied Thermal Engineering 2022:217:119092. https://doi.org/10.1016/j.applthermaleng.2022.11909210.1016/j.applthermaleng.2022.119092
- [13] Kalbasi R., Hassani P. Buildings with less HVAC power demand by incorporating PCM into envelopes taking into account ASHRAE climate classification. Journal of Building Engineering 2022:51:104303. https://doi.org/10.1016/j.jobe.2022.10430310.1016/j.jobe.2022.104303
- [14] Alshuraiaan B. Efficient Utilization of Pcm in Building Envelope in a Hot Environment Condition. International Journal of Thermofluids 2022:16:100205. https://doi.org/10.1016/j.ijft.2022.10020510.1016/j.ijft.2022.100205
- [15] Ajour M. N., Abduaal M. J., Hariri F. A., Abu-Hamdeh N. H., Karimipour A. Reducing electricity demand by integrating a sustainable pack into HVAC- adding PCM in sustainable pack as well as building envelopes. Journal of Building Engineering 2022:57:104915. https://doi.org/10.1016/j.jobe.2022.10491510.1016/j.jobe.2022.104915
- [16] Piselli C., Prabhakar M., De Gracia A., Saffari M., Pisello A. L., Cabeza L. F. Optimal control of natural ventilation as passive cooling strategy for improving the energy performance of building envelope with PCM integration. Renewable Energy 2020:162:171–181. https://doi.org/10.1016/j.renene.2020.07.04310.1016/j.renene.2020.07.043
- [17] Al-mudhafar A. H. N., Hamzah M. T., Tarish A. L. Potential of integrating PCMs in residential building envelope to reduce cooling energy consumption. Case Studies in Thermal Engineering 2021:27:101360. https://doi.org/10.1016/j.csite.2021.10136010.1016/j.csite.2021.101360
- [18] Abu-Hamdeh N. H., Melaibari A. A., Alquthami T. S., Khoshaim A., Oztop H. F., Karimipour A. Efficacy of incorporating PCM into the building envelope on the energy saving and AHU power usage in winter. Sustainable Energy Technologies and Assessments 2021:43:100969. https://doi.org/10.1016/j.seta.2020.10096910.1016/j.seta.2020.100969
- [19] Bumanis G., Bajare D. PCM Modified Gypsum Hempcrete with Increased Heat Capacity for Nearly Zero Energy Buildings. Environmental and Climate Technologies 2022:26(1):524–534. https://doi.org/10.2478/rtuect-2022-004010.2478/rtuect-2022-0040
- [20] Gholamibozanjani G., Farid M. A comparison between passive and active PCM systems applied to buildings. Renewable Energy 2020:162:112–123. https://doi.org/10.1016/j.renene.2020.08.00710.1016/j.renene.2020.08.007
- [21] Arumugam P., Ramalingam V., Vellaichamy P. Effective PCM, insulation, natural and/or night ventilation techniques to enhance the thermal performance of buildings located in various climates – A review. Energy and Buildings 2022:258:111840. https://doi.org/10.1016/j.enbuild.2022.11184010.1016/j.enbuild.2022.111840
- [22] Shen J., Wang Z., Luo Y., Xu J., Zhao H., De’en Cui., Tian Z. Performance evaluation of an active pipe-embedded building envelope system to transfer solar heat gain from the south to the north external wall. Journal of Building Engineering 2022:59:105123. https://doi.org/10.1016/j.jobe.2022.10512310.1016/j.jobe.2022.105123
- [23] Luo Y., De’en Cui, Cheng N., Zhang S., Su X., Chen X., Tian Z., Deng J., Fan J. A novel active building envelope with reversed heat flow control through coupled solar photovoltaic-thermoelectric-battery systems. Building and Environment 2022:222:109401. https://doi.org/10.1016/j.buildenv.2022.10940110.1016/j.buildenv.2022.109401
- [24] Balaji D., Sivalingam S., Bhuvaneswari V., Amarnath V., Adithya J., Balavignesh V., Ganesh Surya R. Aerogels as alternatives for thermal insulation in buildings – A comparative teeny review. Materials Today: Proceedings 2022:62(P8):5371–5377. https://doi.org/10.1016/j.matpr.2022.03.54110.1016/j.matpr.2022.03.541
- [25] Narbuts J., Vanaga R., Freimanis R., Blumberga A. Laboratory Testing of Small-Scale Active Solar Façade Module. Environmental and Climate Technologies 2021:25(1):455–466. https://doi.org/10.2478/rtuect-2021-003310.2478/rtuect-2021-0033
- [26] Cho Y., Kim J.-J. Lifetime decrease of halogen lamps for automotive by duty cycle stress. IEEE Transactions on Reliability 2011:60(3):550–556. https://doi.org/10.1109/TR.2011.213573010.1109/TR.2011.2135730
- [27] Hume R. A. Tungsten halogen lamps. Lamps and Lighting 2012:177–193.