Have a personal or library account? Click to login
CO2-to-Fuel – Business and Institutional Aspects of Implementation Dynamics Cover

CO2-to-Fuel – Business and Institutional Aspects of Implementation Dynamics

Open Access
|Dec 2022

References

  1. [1] Ritchie H., Roser M. Emissions by sector. Our World in Data [Online]. [Accessed 01.07.2021]. Available: https://ourworldindata.org/emissions-by-sector#energy-electricity-heat-and-transport-73-2
  2. [2] Hänggi S., et al. A review of synthetic fuels for passenger vehicles. Energy Reports 2019:5:555–569. https://doi.org/10.1016/j.egyr.2019.04.007
  3. [3] Ghiat I., Al-Ansari T. A review of carbon capture and utilisation as a CO2 abatement opportunity within the EWF nexus. J. CO2 Util. 2020:45:101432. https://doi.org/10.1016/j.jcou.2020.101432
  4. [4] Atsonios K., Panopoulos K. D., Kakaras E. Thermocatalytic CO2 hydrogenation for methanol and ethanol production: Process improvements. Int. J. Hydrogen Energy 2016:41(2):792–806. https://doi.org/10.1016/j.ijhydene.2015.12.001
  5. [5] Arning K., et al. More green or less black ? How benefit perceptions of CO2 reductions vs. fossil resource savings shape the acceptance of CO2-based fuels and their conversion technology. Energy Clim. Chang. 2020:2:100025. https://doi.org/10.1016/j.egycc.2021.100025
  6. [6] Alshammari Y. M. Scenario analysis for energy transition in the chemical industry: An industrial case study in Saudi Arabia. Energy Policy 2021:150:112128. https://doi.org/10.1016/j.enpol.2020.112128
  7. [7] Chen X., Wu X., Lee K. Y. The mutual benefits of renewables and carbon capture: Achieved by an artificial intelligent scheduling strategy. Energy Convers. Manag. 2021:233:113856. https://doi.org/10.1016/j.enconman.2021.113856
  8. [8] Zang G., et al. Performance and cost analysis of liquid fuel production from H2 and CO2 based on the Fischer-Tropsch process. J. CO2 Util. 2021:46:101459. https://doi.org/10.1016/j.jcou.2021.101459
  9. [9] Naill R. F. A system dynamics model for national energy policy planning. Syst. Dyn. Rev. 1992:8(1):1–19. https://doi.org/10.1002/sdr.4260080102
  10. [10] Sterman J. D. The Energy Transition and the Economy: A System Dynamics Approach. Boston: MIT, 1981.
  11. [11] Fiddaman T. S. Exploring policy options with a behavioral climate-economy model. Syst. Dyn. Rev. 2002:18(2):243–267.10.1002/sdr.241
  12. [12] Barlas Y. Formal aspects of model validity and validation in system dynamics. Syst. Dyn. Rev. 1996:12(3):183–210. https://doi.org/10.1002/(SICI)1099-1727(199623)12:3%3C183::AID-SDR103%3E3.0.CO;2-410.1002/(SICI)1099-1727(199623)12:3<183::AID-SDR103>3.0.CO;2-4
  13. [13] Shenbagamuthuraman V., et al. State of art of valorising of diverse potential feedstocks for the production of alcohols and ethers: Current changes and perspectives. Chemosphere 2022:286(P1):131587. https://doi.org/10.1016/j.chemosphere.2021.13158734303047
  14. [14] Zeng K., Zhang D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010:36(3):307–326. https://doi.org/10.1016/j.pecs.2009.11.002
  15. [15] European Energy Exchange. Environmental Markets-Spot Market 2021. [Online]. [Accessed 30.12.2021]. Available: https://www.eex.com/en/market-data/environmental-markets/spot-market
  16. [16] Latvian Center for Environment, Geology and Meteorology. Sadaļa Klimats. Aptuvenās SEG inventarizācijas par X-1 gadu (Climate Section. Estimated GHG inventories for year X-1.). 2021. [Online]. [Accessed 15.01.2022]. Available: https://videscentrs.lvgmc.lv/lapas/zinojums-par-klimatu (in Latvian)
  17. [17] Central Statistical Bureau Republic of Latvia. Energobilance, TJ, tūkst.toe (NACE 2. red.)2008 – 2020 (Energobilance, TJ, thousand toe (NACE 2nd rev.) 2008 – 2020.). 2020. [Online]. [Accessed 15.01.2022]. Available: https://data.stat.gov.lv/pxweb/lv/OSP_PUB/START__NOZ__EN__ENB/ENB060 (in Latvian)
  18. [18] Stella Architect. ISEE SYSTEMS [Online]. [Accessed dd.mm.yyyy]. Available: https://www.iseesystems.com/
  19. [19] The European Commission. COMMUICATIO FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AD SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS. Brussels: EC, 2008.
  20. [20] Nieskens D. L. S., et al. The conversion of carbon dioxide and hydrogen into methanol and higher alcohols. Catal. Commun. 2011:14(1):111–113.10.1016/j.catcom.2011.07.020
  21. [21] Runge P., et al. Economic comparison of different electric fuels for energy scenarios in 2035. Appl. Energy 2019:233–234:1078–1093. https://doi.org/10.1016/j.apenergy.2018.10.023
DOI: https://doi.org/10.2478/rtuect-2022-0089 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 1182 - 1195
Published on: Dec 9, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Gunars Valdmanis, Gatis Bazbauers, Martins Bataitis, Girts Bohvalovs, Janis Lilo, Andra Blumberga, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.