References
- [1] Montanari C., Olsén P., Berglund L. A. Sustainable Wood Nanotechnologies for Wood Composites Processed by In-Situ Polymerization. Front. Chem. 2021:9:1–12. https://doi.org/10.3389/fchem.2021.68288310.3389/fchem.2021.682883828129234277566
- [2] Blumberga D., et al. Forest biomass – new products and technologies. Riga: Riga Technical University, Institute of Energy Systems and Environment, 2016.
- [3] Terjanika V., Pubule J. Barriers and Driving Factors for Sustainable Development of CO2 Valorisation. Sustainability 2022:14(9):5054. https://doi.org/10.3390/su1409505410.3390/su14095054
- [4] Terjanika V., et al. Analysis of CO2 Valorisation Options for Regional Development. Environmental and Climate Technologies 2021:25(1):243–253. https://doi.org/10.2478/rtuect-2021-0017.10.2478/rtuect-2021-0017
- [5] Terjanika V., Blumberga D., Pubule J. Regional Development Scenarios and Model Boundaries for CCU in Energy Sector in Latvia. Proceedings of the IEEE 62nd International Scientific Conference on Power and Electrical Engineering of Riga Technical University, RTUCON 2021. https://doi.org/10.1109/RTUCON53541.2021.9711727.10.1109/RTUCON53541.2021.9711727
- [6] Singh T., et al. Emerging technologies for the development of wood products towards extended carbon storage and CO2 capture. Carbon Capture Science & Technology 2022:4:100057. https://doi.org/10.1016/j.ccst.2022.10005710.1016/j.ccst.2022.100057
- [7] Xu X., et al. Bamboo construction materials: Carbon storage and potential to reduce associated CO2 emissions. Science of the Total Environment 2022:814:152697. https://doi.org/10.1016/j.scitotenv.2021.15269710.1016/j.scitotenv.2021.15269734974007
- [8] Tripathi N., et al. Biomass waste utilisation in low-carbon products: harnessing a significant potential resource. Npj Climate and Atmospheric Science 2019:2:35. https://doi.org/10.1038/s41612-019-0093-510.1038/s41612-019-0093-5
- [9] Kazulis V., et al. Carbon storage in wood products. Energy Procedia 2017:128:558–563. https://doi.org/10.1016/j.egypro.2017.09.00910.1016/j.egypro.2017.09.009
- [10] Raunkjaer Stubdrup K., et al. Best Available Techniques (BAT) Reference Document for the Production of Wood-based Panels. Seville: JRC, 2016.
- [11] Veitmans K., Grinfelds U. Wood fibre insulation material. Research for Rural Development 2016:2:91–98.
- [12] Vamza I., et al. Bioresource utilization index – A way to quantify and compare resource efficiency in production. Journal of Cleaner Production 2021:320:128791. https://doi.org/10.1016/j.jclepro.2021.12879110.1016/j.jclepro.2021.128791
- [13] Gruduls K., et al. 2013. Characteristics of wood chips from logging residues and quality influencing factors. Research for Rural Development 2013:2:49–54.
- [14] FAO, ITTO, United Nations. Forest product conversion factors. Rome: FAO, 2020.
- [15] Dieffenbacher GmbH. Fibre Insulation Board lines [Online]. [Accessed 20.04.2022]. Available: https://www.environmental-expert.com/products/fibre-insulation-board-lines-190613
- [16] Tellnes L. G. F., et al. Comparative assessment for biogenic carbon accounting methods in carbon footprint of products: A review study for construction materials based on forest products. ISEF – Italian Society of Silviculture and Forest Ecology 2017:10(5):815–823. https://doi.org/10.3832/ifor2386-01010.3832/ifor2386-010
- [17] Pubule J., et al. Analysis of the environmental impact assessment of power energy projects in Latvia. Management of Environmental Quality 2012:23(2):190–203. https://doi.org/10.1108/14777831211204930.10.1108/14777831211204930
- [18] BRE Ltd. BRE Global Product Category Rules for Type III environmental product declaration of construction products to EN 15804:2012+A1:2013. Watford: BRE Group, 2014.
- [19] Balkan Green Energy News. 5 MWe biomass cogeneration plant officially opened in the city of Slatina. 2019 [Online]. [Accessed 20.04.2022]. Available: https://balkangreenenergynews.com/5-mwe-biomass-cogeneration-plant-officially-opened-in-the-city-of-slatina/
- [20] U.S. Department of Energy. Combined Heat and Power Technology Fact Sheet Series: Gas turbines. Washington: DoE, 2016.
- [21] Danish Energy Agency. Technology Data for Energy Plants for Electricity and District Heating generation. Copenhagen: DEA, 2019.
- [22] Abbas T., Issa M., Ilinca A. Biomass Cogeneration Technologies: A Review. Journal of Sustainable Bioenergy Systems 2020:10(1):1–15. https://doi.org/10.4236/jsbs.2020.10100110.4236/jsbs.2020.101001
- [23] Tsiropoulos I., Tarvydas D., Zucker A. Cost development of low carbon energy technologies. Luxembourg: Publication Office of European Union, 2018.
- [24] Zalamane D. Pieaug koksnes šķeldas cena, apkure ar šķeldu ir 5 reizes lētāka nekā ar dabasgāzi (The price of wood chips is rising, heating with wood chips is 5 times cheaper than with natural gas.). 2022 [Online]. [Accessed 20.04.2022]. Available: https://lr1.lsm.lv/lv/raksts/eiro-fokusa/pieaug-koksnes-skeldas-cena-apkure-ar-skeldu-ir-5-reizes-letaka-.a155970/ (in Latvian)
- [25] ‘Latvijas gaze’ brīdina par dabasgāzes biržas cenas trīskāršu pieaugumu aprīlī (‘Latvian gas’ warns of a threefold increase in natural gas exchange prices in April). 2022 [Online]. [Accessed 20.04.2022] Available: https://www.lsm.lv/raksts/zinas/ekonomika/latvijas-gaze-bridina-par-dabasgazes-birzas-cenas-triskarsu-pieaugumuaprili.a446800/ (in Latvian)
- [26] Darrow K., et al. Catalogue of CHP technologies. Boston: EPA, ICF International, 2017.
- [27] Cabinet of Ministers. Methodology for calculating greenhouse gas emissions. Latvijas Vestnesis 2018:18.
- [28] Ishizaka A., Nemery P. Multi-criteria Decision Analysis: Methods and Software. USA: Wiley, 2013.10.1002/9781118644898
- [29] American Center for Life Cycle Assessment. ACLCA Guidance to Calculating Non-LCIA Inventory Metrics in Accordance with ISO 21930:2017. Washington: ACLCA, 2019.
- [30] European Commission, Joint Research Centre, Institute for Environment and Sustainability. International Reference Life Cycle Data System (ILCD) Handbook. General guide for Life Cycle Assessment. Detailed guidance. Luxembourg: Publications Office of the European Union, 2010.
- [31] British Standards Institution. 2011. PAS 2050:2011: Specification for the assessment of the life cycle greenhouse gas emissions of goods and services.