Have a personal or library account? Click to login

Effect of Organic Fertilization on the Physiological Status of Tomatoes under Abiotic Stress

Open Access
|Nov 2022

References

  1. [1] Svetozarevic J., Nikolova N. Seasonal distribution of extreme precipitation months in Northwest Bulgaria. Conference Proceedings Climate, atmosphere and water resources in the face of climate change 2021:3:15-22
  2. [2] Avotniece Z., Klavins M., Rodinovs V. Changes of Extreme Climate Events in Latvia. Environmental and Climate Technologies 2012:9:4–11. https://doi.org/10.2478/v10145-012-0010-1.10.2478/v10145-012-0010-1
  3. [3] Kolcheva K. Water Policy and Management of Water Resources in the World and Bulgaria. Monograph. 2020.
  4. [4] Kolcheva K. Irrigation water demand and infrastructure during drought. Hydrology and Water Resources 21st International Scientific Multidisciplinary Conference on Earth and Planetary Sciences SGEM, 2021. https://doi.org/10.5593/sgem2021/3.1/s12.2310.5593/sgem2021/3.1/s12.23
  5. [5] Alexandrov V., Shopova N. Analysis of precipitation during the autumn-winter period in agricultural regions of Bulgaria. Conference Proceedings Climate, atmosphere and water resources in the face of climate change, 2020.
  6. [6] Wei L., Jiheng L., Junhong G., Zhe B., Lingbo F., Baodeng H. The Effect of Precipitation on Hydropower Generation Capacity: A Perspective of Climate Change. Frontiers in Earth Science 2020:8:268. https://doi.org/10.3389/feart.2020.0026810.3389/feart.2020.00268
  7. [7] Kenichi M. Climate change impacts on socioeconomic activities through labour productivity changes considering interactions between socioeconomic and climate systems. Journal of Cleaner Production 2019:216:528–541. https://doi.org/10.1016/j.jclepro.2018.12.12710.1016/j.jclepro.2018.12.127
  8. [8] Dotterweich M. The history of soil erosion and fluvial deposits in small catchments of central Europe: Deciphering the long-term interaction between humans and the environment – A review. Geomorphology 2008:101(1–2):192–208. https://doi.org/10.1016/j.geomorph.2008.05.02310.1016/j.geomorph.2008.05.023
  9. [9] Knapp K., Beier C., Briske D., Classen T., Luo Y., Reichstein M., Smith D., Smith D., Bell J. E., Fay A., Heisler L., Leavitt W., Sherry R., Smith B., Weng E. Consequences of More Extreme Precipitation Regimes for Terrestrial Ecosystems. Bioscience 2008:58(9):811–821. https://doi.org/10.1641/B58090810.1641/B580908
  10. [10] Arnaudov B. Results of application of humustim in some tomatoes, cucumbers and cabbage. Humustim – A Gift from Nature. The Fertilizer of the Future. Sofia, Dimi 99, 2007.
  11. [11] Dincheva T. Boteva H., Dimov I. Study of vegetable biological production systems on yield and dry matter content in tomato fruit. Acta Horticulturae 2009:830:613–618. https://doi.org/10.17660/ActaHortic.2009.830.8910.17660/ActaHortic.2009.830.89
  12. [12] Yankova P., Boteva H. Impact of the scheme of growing and nutrient regime on vegetative manifestations in biological production of tomatoes. New Knowledge Journal of Science 2017:6:1:182–188
  13. [13] Botеva H. Productivity and quality of open field tomato after application of bio-fertilizers. Agricultural Science and Technology 2016:8:2:140–143.
  14. [14] Ayoola O., Makinde E. Complementary Organic and Inorganic Fertilizer Application: Influence on Growth and Yield of Cassava melon Intercrop with a Relayed Cowpea. Australian Journal of Basic and Applied Sciences 2007:1(3):187–192.
  15. [15] Dreval Y., Loboichenko V., Malko A., Morozov A., Zaika S., Kis V. The Problem of Comprehensive Analysis of Organic Agriculture as a Factor of Environmental Safety. Environmental and Climate Technologies 2020:24(1):58–71. https://doi.org/10.2478/rtuect-2020-000410.2478/rtuect-2020-0004
  16. [16] Derekvandi S., Alemzadeh N., Dehcordie F. Effects of Different Levels of Nitrogen Fertilizer with Two Types of Bio-Fertilizers on Growth and Yield of Two Cultivars of Tomato (Lycopersicon esculentum Mill). Asian Journal of Plant Sciences 2008:7(8):757–761. https://doi.org/10.3923/ajps.2008.757.76110.3923/ajps.2008.757.761
  17. [17] Hallmann E. Rembialkowska E. Estaimation of fruits quality of selected tomato cultivars from organic and conventional cultivation with special consideration of bioactive compounds content. Journal of Research and Applications in Agricultural Engineering 2007:3:55–60.
  18. [18] Singh B., Pathak K. Boopathi T., Deka B. Vermicompost and NPK fertilizer effects on morpho-physiological traits of plants, yield and quality of tomato fruits (Solanum lycopersicum L.) Journal of Fruit and Ornamental Plant Research 2010:73:77–86. https://doi.org/10.2478/v10032-010-0020-010.2478/v10032-010-0020-0
  19. [19] Tringovska I. The effects of humic and bio-fertilizers on growth and yield of greenhouse tomatoes. Acta Horticulturae 2012:960:443–449. https://doi.org/10.17660/ActaHortic.2012.960.6210.17660/ActaHortic.2012.960.62
  20. [20] Altaf M. A., Shahid R., Ren M.-X., Naz S., Altaf M. M., Khan L. U., Tiwari R. K., Lal M. K., Shahid M. A., Kumar R., Kumar Lal M., Shahid M., Kumar R., Nawaz M., Jahan M., Jan B., Parvaiz A. Melatonin improves drought stress tolerance of tomato by modulation plant growth, root architecture, photosynthesis, and antioxidant defense system. Antioxidants 2022:11(2):309. https://doi.org/10.3390/antiox1102030910.3390/antiox11020309886817535204192
  21. [21] Omasa K., Takayama K. Simultaneous measurement of stomatal conductance, non-photochemical quenching, and photochemical yield of photosystem II in intact leaves by thermal and chlorophyll fluorescence imaging. Plant Cell Physiology 2003:44(12):1290–1300. https://doi.org/10.1093/pcp/pcg16510.1093/pcp/pcg16514701924
  22. [22] Simeneh T. A. Photosynthesis limiting stresses under climate change scenarios and role of chlorophyll fluorescence. Cogent Food & Agriculture 2020:6:1–18. https://doi.org/10.1080/23311932.2020.178513610.1080/23311932.2020.1785136
  23. [23] Strasser B. J. Donor side capacity of photosynthesis II probed by chlorophyll a fluorescence transients. Photosynthesis Research 1997:52:147–55. https://doi.org/10.1023/A:100589602977810.1023/A:1005896029778
  24. [24] Opti-Sciences, Inc., CCM-200 Chlorophyll Content Meter. 2002. [Online]. [Accessed: 15.03.2022]. Available: http://www.optisci.com/ccm.htm
  25. [25] Maxwell K., Johnson G. N. Chlorophyll fluorescence a practical guide. Journal of Experimental Botany 2000:51(345):659–668. https://doi.org/10.1093/jexbot/51.345.65910.1093/jexbot/51.345.659
  26. [26] Nedbal L., Soukupová J., Kaftan D., Whitmarsh J., Trtílek M. Kinetic imaging of chlorophyll fluorescence using modulated light. Photosynthesis Research 2000:66:3–12. https://doi.org/10.1023/A:101072982187610.1023/A:101072982187616228406
  27. [27] Georgieva V., Shopova N., Kazandjiev V. Assessment of conditions in South Bulgaria for spring crop growing using agrometeorological indices. AIP Conference Proceedings 2019:2075(1):120014. https://doi.org/10.1063/1.509127210.1063/1.5091272
  28. [28] Shopova N., Alexandrov V. Hydrothermal conditions in risky agricultural areas of Central and Southeastern Bulgaria. Conference Proceedings Climate, atmosphere and water resources in the face of climate change 2021:3:164–173.
  29. [29] Yang X., Zhang P., Wei Z., Liu J., Hu X., Liu F. Effects of elevated CO2 and nitrogen supply on leaf gas exchange, plant water relations and nutrient uptake of tomato plants exposed to progressive soil drying. Scientia Horticulturae 2022:292:110643. https://doi.org/10.1016/j.scienta.2021.11064310.1016/j.scienta.2021.110643
  30. [30] Camejo D., Rodrıgueza P., Morales M., Dell’Amico J., Torrecillas A., Alarcon, J. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of Plant Physiology 2005:162(3):281–289. https://doi.org/10.1016/j.jplph.2004.07.01410.1016/j.jplph.2004.07.01415832680
  31. [31] Chen J., Burke J., Xin, Z. Chlorophyll fluorescence analysis revealed essential roles of FtsH11 protease in regulation of the adaptive responses of photosynthetic systems to high temperature. BMC Plant Biology 2018:18:11:1–13. https://doi.org/10.1186/s12870-018-1228-210.1186/s12870-018-1228-2576391929320985
  32. [32] Demmig B., Björkman O. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 1987:170:489–504. https://doi.org/10.1007/BF0040298310.1007/BF0040298324233012
  33. [33] Zhang H., Liu X., Song B., Nie B., Zhang W., Zhao Z. Effect of excessive nitrogen on levels of amino acids and sugars, and differential response to post-harvest cold storage in potato (Solanum tuberosum L.) tubers Plant Physiology. Biochemistry 2020:157:38–46. https://doi.org/10.1016/j.plaphy.2020.09.04010.1016/j.plaphy.2020.09.04033069979
  34. [34] Kostadinov K., Filipov S., Valcheva V., Kuneva V. Influence of biological fertilization on vegetative behaviour and productivity of greenhouse eggplant. Scientific Papers, Series B. Horticulture 2019:63:1:297–305.
DOI: https://doi.org/10.2478/rtuect-2022-0084 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 1118 - 1127
Published on: Nov 28, 2022
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Kostadin Kostadinov, Radoslav Chipilski, Stoyan Filipov, Nadezhda Shopova, published by Riga Technical University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.