Have a personal or library account? Click to login

Impact Assessment of the Renewable Energy Policy Scenarios – a Case Study of Latvia

Open Access
|Nov 2022

References

  1. [1] Sen S., Ganguly S. Opportunities, barriers and issues with renewable energy development – A discussion. Renewable and Sustainable Energy Reviews 2017:69:1170–1181. https://doi.org/10.1016/J.RSER.2016.09.137
  2. [2] Naumann M., Rudolph D. Conceptualizing rural energy transitions: Energizing rural studies, ruralizing energy research. J Rural Stud 2020:73:97–104. https://doi.org/10.1016/J.JRURSTUD.2019.12.011
  3. [3] Annibaldi V., et al. Renewable Energy Policies: Bibliometric Review and Policy Implications. Environmental and Climate Technologies 2020:24(3):403–417. https://doi.org/10.2478/RTUECT-2020-0112
  4. [4] Kariuki D. Barriers to Renewable Energy Technologies Development [Online]. [Accessed 05.09.2022]. Available: https://www.researchgate.net/publication/348936339_Barriers to Renewable Energy Technologies Development
  5. [5] Moorthy S., et al. Breaking barriers in deployment of renewable energy. Heliyon 2019:5(1):e01166. https://doi.org/10.1016/J.HELIYON.2019.E01166
  6. [6] Broom D. 5 charts show the rapid fall in costs of renewable energy. Energy Post [Online]. [Accessed 05.09.2022]. Available: https://energypost.eu/5-charts-show-the-rapid-fall-in-costs-of-renewable-energy/
  7. [7] Policarp M., et al. SocialRES Energy Innovation Framework: A Comparative Analysis of Existing Business Models for RES Cooperative, Aggregators and Crowdfunders. Proceedings of the 38th European Photovoltaic Solar Energy Conference and Exhibition 2021:1618–1619. https://doi.org/10.4229/EUPVSEC20212021-7DO.5.4
  8. [8] Burke M. J., Stephens J. C. Political power and renewable energy futures: A critical review. Energy Res Soc Sci 2018:35:78–93. https://doi.org/10.1016/J.ERSS.2017.10.018
  9. [9] Ameriks U. “Laflora” vēja parks: ceļā uz zaļu industriālo zonu Zemgales reģionā (“Laflora” wind park: on the way to a green industrial zone in the Zemgale region.). Jelgava: Laflora, 2020. (in Latvian)
  10. [10] Ruiz Romero S., Colmenar Santos A., Castro Gil M. A. EU plans for renewable energy. An application to the Spanish case. Renew Energy 2012:43:322–330. https://doi.org/10.1016/J.RENENE.2011.11.033
  11. [11] Sunak Y., Madlener R. The impact of wind farm visibility on property values: A spatial difference-in-differences analysis. Energy Econ 2016:55:79–91. https://doi.org/10.1016/J.ENECO.2015.12.025
  12. [12] Wang L., et al. Optimization of wind farm layout with complex land divisions. Renew Energy 2017:105:30–40. https://doi.org/10.1016/J.RENENE.2016.12.025
  13. [13] Climate Policy Info Hub. Social Acceptance of Renewable Energy [Online]. [Accessed April 20, 2022]. Available: https://climatepolicyinfohub.eu/social-acceptance-renewable-energy.html
  14. [14] Richards G., Noble B., Belcher K. Barriers to renewable energy development: A case study of large-scale wind energy in Saskatchewan, Canada. Energy Policy 2012:42:691–698.10.1016/j.enpol.2011.12.049
  15. [15] Leiren M. D., et al. Community Acceptance of Wind Energy Developments: Experience from Wind Energy Scarce Regions in Europe. Sustainability 2020:12(5):12051754. https://doi.org/10.3390/su12051754
  16. [16] The Danish Energy Agency. Technology Data. [Online]. [Accessed April 20, 2022]. Available: https://ens.dk/en/our-services/projections-and-models/technology-data
  17. [17] Muizniece I., Blumberga D. Wood resources for energy sector in Latvia. Is it a sustainable solution? Energy Procedia 2017:128:287–291. https://doi.org/10.1016/j.egypro.2017.09.076
  18. [18] Santoyo-Castelazo E., Azapagic A. Sustainability assessment of energy systems: integrating environmental, economic and social aspects. J Clean Prod 2014:80:119–138. https://doi.org/10.1016/J.JCLEPRO.2014.05.061
  19. [19] Väisänen S., et al. Using a multi-method approach for decision-making about a sustainable local distributed energy system: A case study from Finland. Journal of Cleaner Production 2016:137:1330–1338. https://doi.org/10.1016/J.JCLEPRO.2016.07.173
  20. [20] Şengül Ü., et al. Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey. Renew Energy 2015:75:617–625. https://doi.org/10.1016/J.RENENE.2014.10.045
  21. [21] Štreimikiene D., Šliogeriene J., Turskis Z. Multi-criteria analysis of electricity generation technologies in Lithuania. Renew Energy 2016:85:148–156. https://doi.org/10.1016/J.RENENE.2015.06.032
  22. [22] Stein E. W. A comprehensive multi-criteria model to rank electric energy production technologies. Renewable and Sustainable Energy Reviews 2013:22:640–654. https://doi.org/10.1016/J.RSER.2013.02.001
  23. [23] Blumberga A., Gravelsins A., Blumberga D. Deliberation Platform for Energy Transition Policies: How to Make Complex Things Simple. Energies 2022:15(1):90. https://doi.org/10.3390/EN15010090
  24. [24] Pakere I., et al. Will there be the waste heat and boiler house competition in Latvia? Assessment of industrial waste heat. Smart Energy 2021:3:100023. https://doi.org/10.1016/J.SEGY.2021.100023
  25. [25] Ozoliņa S. A., et al. Can energy sector reach carbon neutrality with biomass limitations? Energy 2022:249:123797. https://doi.org/10.1016/J.ENERGY.2022.123797
  26. [26] Kacare M., Pakere I., Gravelsins A. The coupling of the system dynamics model with GIS to visualise the potential of renewable energy. Proceedings of the 24th thematic conference of the Young Scientists Conference “Science - The Future of Lithuania” Environmental Protection Engineering 2020. https://doi.org/10.3846/aainz.2021.12
  27. [27] Kacare M., et al. Spatial Analysis of Renewable Energy Sources. Environmental and Climate Technologies 2021:25:865–878. https://doi.org/10.2478/rtuect-2021-0065
  28. [28] Tukulis A., et al. Methodology of system dynamic approach for solar energy integration in district heating. Energy Procedia 2018:147:130–136. https://doi.org/10.1016/J.EGYPRO.2018.07.042
  29. [29] Feofilovs M., Romagnoli F., Gravelsins A. System dynamics model for natural gas infrastructure with storage facility in Latvia. Energy Procedia 2018:147:549–557. https://doi.org/10.1016/J.EGYPRO.2018.07.070
  30. [30] Rozentale L., et al. System dynamics modelling of railway electrification in Latvia. Environmental and Climate Technologies 2020:24(2):247–257. https://doi.org/10.2478/RTUECT-2020-0070
  31. [31] Jin Y., et al. Water use of electricity technologies: A global meta-analysis. Renewable and Sustainable Energy Reviews 2019:115:109391. https://doi.org/10.1016/j.rser.2019.109391
  32. [32] Chatzimouratidis A. I., Pilavachi P. A. Technological, economic and sustainability evaluation of power plants using the Analytic Hierarchy Process. Energy Policy 2009:37(3):778–787. https://doi.org/10.1016/j.enpol.2008.10.009
  33. [33] Väisänen S., et al. Using a multi-method approach for decision-making about a sustainable local distributed energy system: A case study from Finland. J Clean Prod 2016:137:1330–1338. https://doi.org/10.1016/j.jclepro.2016.07.173
  34. [34] Štreimikienė D., Šliogerienė J., Turskis Z. Multi-criteria analysis of electricity generation technologies in Lithuania, Renew Energy 2015:85:148–156. https://doi.org/10.1016/j.renene.2015.06.032
  35. [35] Mourmouris J. C., Potolias C. A multi-criteria methodology for energy planning and developing renewable energy sources at a regional level: A case study Thassos, Greece. Energy Policy 2012:52:522–530. https://doi.org/10.1016/j.enpol.2012.09.074
  36. [36] Mastrocinque E., et al. An AHP-based multi-criteria model for sustainable supply chain development in the renewable energy sector. Expert Syst Appl 2020:150:113321. https://doi.org/10.1016/j.eswa.2020.113321
  37. [37] Mwanza M., Ulgen K. Sustainable electricity generation fuel mix analysis using an integration of multicriteria decision-making and system dynamic approach. International Journal of Energy Research 2020:44(12):9560–9585. https://doi.org/10.1002/er.5216
DOI: https://doi.org/10.2478/rtuect-2022-0075 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 998 - 1019
Published on: Nov 5, 2022
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Marika Kacare, Ieva Pakere, Armands Gravelsins, Andra Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.