Have a personal or library account? Click to login

Biodiesel Production Using Calcined Phosphate Rock as a Precursor of Calcium Oxide Heterogeneous Catalyst

Open Access
|Nov 2022

References

  1. [1] Ong H. C. et al. Recent advances in biodiesel production from agricultural products and microalgae using ionic liquids: Opportunities and challenges. Energy Convers. Manag. 2021:228:113647. https://doi.org/10.1016/j.enconman.2020.113647
  2. [2] Zhang Y., Duan L., Esmaeili H. A review on biodiesel production using various heterogeneous nanocatalysts: Operation mechanisms and performances. Biomass Bioenergy 2022:158:106356. https://doi.org/10.1016/j.biombioe.2022.106356
  3. [3] Anwar M., Rasul M. G., Ashwath N. Production optimization and quality assessment of papaya (Carica papaya) biodiesel with response surface methodology. Energy Convers. Manag. 2018:156:103–112. https://doi.org/10.1016/j.enconman.2017.11.004
  4. [4] Ma F., Hanna M. A. Biodiesel production: a review1Journal Series #12109, Agricultural Research Division, Institute of Agriculture and Natural Resources, University of Nebraska–Lincoln.1. Bioresour. Technol. 1999:70(1):1–15. https://doi.org/10.1016/S0960-8524(99)00025-5
  5. [5] Okolie J. A., Ivan Escobar J., Umenweke G., Khanday W., Okoye P. U. Continuous biodiesel production: A review of advances in catalysis, micro fluidic and cavitation reactors. Fuel 2022:307:121821. https://doi.org/10.1016/j.fuel.2021.121821
  6. [6] Gebremariam S. N., Marchetti J. M. Economics of biodiesel production: Review. Energy Convers. Manag. 2018:168:74–84. https://doi.org/10.1016/j.enconman.2018.05.002
  7. [7] Rudolf Diesel – an overview. ScienceDirect Topics. [Online]. [Accessed 17.03.2017]. Available: https://www.sciencedirect.com/topics/engineering/rudolf-diesel
  8. [8] Gui M. M., Lee K. T., Bhatia S. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 2008:33(11):1646–1653. https://doi.org/10.1016/j.energy.2008.06.002
  9. [9] Cavalcante F. T. T. et al. Opportunities for improving biodiesel production via lipase catalysis. Fuel 2021:288:119577. https://doi.org/10.1016/j.fuel.2020.119577
  10. [10] Modiba E., Osifo P., Rutto H. Biodiesel production from baobab (Adansonia digitata L.) seed kernel oil and its fuel properties. Ind. Crops Prod. 2014:59:50–54. https://doi.org/10.1016/j.indcrop.2014.04.044
  11. [11] Naima K., Liazid A. Waste oils as alternative fuel for diesel engine: A review. J. Pet. Technol. Altern. Fuels 2013:4(3):30–43. https://doi.org/10.5897/JPTAF12.026
  12. [12] Mwenge P., Rutto H., Enweremadu C. Production of Biodiesel using Calcined Brine Sludge Waste from Chor-Alkali Industry as a Heterogeneous Catalyst. Environ. Clim. Technol. 2021:25(1):621–630. https://doi.org/10.2478/rtuect-2021-0046
  13. [13] Bombo K., Lekgoba T., Azeez O., Muzenda E. Production of Biodiesel from Moringa Oleifera and Jatropha Curcas Seed Oils over a Modified ZnO/Fly Ash Catalyst. Environ. Clim. Technol. 2021:25(1):151–160. https://doi.org/10.2478/rtuect-2021-0010
  14. [14] Salleh Z. M., Yahya N. Y., Nasarudin M. A. S., Herman D. N. Transesterification of used frying oil by activated banana peels waste catalyst for biodiesel production. Mater. Today Proc. 2021:57(P3):1235–1240. https://doi.org/10.1016/j.matpr.2021.11.074
  15. [15] Gouran A., Aghel B., Nasirmanesh F. Biodiesel production from waste cooking oil using wheat bran ash as a sustainable biomass. Fuel 2021:295:120542. https://doi.org/10.1016/j.fuel.2021.120542
  16. [16] Laskar I. B., et al. Waste snail shell derived heterogeneous catalyst for biodiesel production by the transesterification of soybean oil. RSC Adv. 2018:36:20131–20142. https://doi.org/10.1039/C8RA02397B
  17. [17] Sahar et al. Biodiesel production from waste cooking oil: An efficient technique to convert waste into biodiesel. Sustain. Cities Soc. 2018:41:220–226. https://doi.org/10.1016/j.scs.2018.05.037
  18. [18] Leung D. Y. C., Wu X., Leung M. K. H. A review on biodiesel production using catalyzed transesterification. Appl. Energy 2010:87(4):1083–1095. https://doi.org/10.1016/j.apenergy.2009.10.006
  19. [19] Eisa M. Y., Dabbas M. A., Abdulla F. H. Quantitative identification of phosphate using X-Ray diffraction and Fourier transform infra-red (FTIR) spectroscopy. Int. J. Curr. Microbiol. App. Sci. 2015:4(1):270–283.
  20. [20] ANR R., Saleh A. A., Islam Md. S., Hamdan S., Maleque Md. A. Biodiesel Production from Crude Jatropha Oil using a Highly Active Heterogeneous Nanocatalyst by Optimizing Transesterification Reaction Parameters. Energy Fuels 2016:30(1):334–343. https://doi.org/10.1021/acs.energyfuels.5b01899
  21. [21] Mosaddegh E., Hassankhani A. Preparation and characterization of nano-CaO based on eggshell waste: Novel and green catalytic approach to highly efficient synthesis of pyrano [4,3-b] pyrans. Chin. J. Catal. 2014:35(3):351–356. https://doi.org/10.1016/S1872-2067(12)60755-4
  22. [22] Foroutan R., Mohammadi R., Esmaeili H., Mirzaee Bektashi F., Tamjidi S. Transesterification of waste edible oils to biodiesel using calcium oxide@magnesium oxide nanocatalyst. Waste Manag. 2020:105:373–383. https://doi.org/10.1016/j.wasman.2020.02.03232120264
  23. [23] Ali C. H. et al. Improved transesterification of waste cooking oil into biodiesel using calcined goat bone as a catalyst. Energy Sources Part Recovery Util. Environ. Eff. 2018:40(9):1076–1083. https://doi.org/10.1080/15567036.2018.1469691
  24. [24] Perea A., Kelly T., Hangun-Balkir Y. Utilization of waste seashells and Camelina sativa oil for biodiesel synthesis. Green Chem. Lett. Rev. 2016:9(1):27–32. https://doi.org/10.1080/17518253.2016.1142004
  25. [25] Endalew A. K., Kiros Y., Zanzi R. Inorganic heterogeneous catalysts for biodiesel production from vegetable oils. Biomass Bioenergy 2011:35(9):3787–3809. https://doi.org/10.1016/j.biombioe.2011.06.011
  26. [26] Tran-Nguyen P. L., Ong L. K., Go A. W., Ju Y.-H., Angkawijaya A. E. Non-catalytic and heterogeneous acid/base-catalyzed biodiesel production: Recent and future developments. Asia-Pac. J. Chem. Eng. 2020:15(3):e2490. https://doi.org/10.1002/apj.2490
  27. [27] Sulaiman N. F., Wan Abu Bakar W. A., Ali R. Response surface methodology for the optimum production of biodiesel over Cr/Ca/γ-Al2O3 catalyst: Catalytic performance and physicochemical studies. Renew. Energy 2017:113:697–705. https://doi.org/10.1016/j.renene.2017.06.007
  28. [28] Rabie A. M., Shaban M., Abukhadra M. R., Hosny R., Ahmed S. A., Negm N. A. Diatomite supported by CaO/MgO nanocomposite as heterogeneous catalyst for biodiesel production from waste cooking oil. J. Mol. Liq. 2019:279:224–231. https://doi.org/10.1016/j.molliq.2019.01.096
  29. [29] Gupta J., Agarwal M. Preparation and characterization of CaO nanoparticle for biodiesel production. AIP Conf. Proc. 2016:1724(1):020066. https://doi.org/10.1063/1.4945186
  30. [30] Soetaredjo F. E., Ayucitra A., Ismadji S., Maukar A. L. KOH/bentonite catalysts for transesterification of palm oil to biodiesel. Appl. Clay Sci. 2011:53(2):341–346. https://doi.org/10.1016/j.clay.2010.12.018
  31. [31] Rezania S. et al. Biodiesel production from wild mustard (Sinapis Arvensis) seed oil using a novel heterogeneous catalyst of LaTiO3 nanoparticles. Fuel 2022:307:121759. https://doi.org/10.1016/j.fuel.2021.121759
  32. [32] Sahar et al. Biodiesel production from waste cooking oil: An efficient technique to convert waste into biodiesel. Sustain. Cities Soc. 2018:41:220–226. https://doi.org/10.1016/j.scs.2018.05.037
  33. [33] Banerjee S., Rout S., Banerjee S., Atta A., Das D. Fe2O3 nanocatalyst aided transesterification for biodiesel production from lipid-intact wet microalgal biomass: A biorefinery approach. Energy Convers. Manag. 2019:195:844–853. https://doi.org/10.1016/j.enconman.2019.05.060
  34. [34] Putra M. D., Irawan C., Udiantoro, Ristianingsih Y., Nata I. F. A cleaner process for biodiesel production from waste cooking oil using waste materials as a heterogeneous catalyst and its kinetic study. J. Clean. Prod. 2018:195:1249–1258. https://doi.org/10.1016/j.jclepro.2018.06.010
  35. [35] Roy T., Sahani S., Chandra Sharma Y. Study on kinetics-thermodynamics and environmental parameter of biodiesel production from waste cooking oil and castor oil using potassium modified ceria oxide catalyst. J. Clean. Prod. 2020:247:119166. https://doi.org/10.1016/j.jclepro.2019.119166
DOI: https://doi.org/10.2478/rtuect-2022-0073 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 968 - 981
Published on: Nov 5, 2022
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Janet Kiprono, Hilary Rutto, Tumisang Seodigeng, Christopher Enweremadu, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.