Have a personal or library account? Click to login

Development and Assessment of Carbon Farming Solutions

Open Access
|Oct 2022

References

  1. [1] European Commission, Communication From The Commission To The European Parliament And The Council. Sustainable Carbon Cycles., Brussels, 2021.
  2. [2] Dolge K., Blumberga D. Key Factors Influencing the Achievement of Climate Neutrality Targets in the Manufacturing Industry: LMDI Decomposition Analysis. Energies 2021:14(23):8006. https://doi.org/10.3390/EN1423800610.3390/en14238006
  3. [3] Kuramochi T., Ramírez A., Turkenburg W., Faaij A. Effect of CO2 capture on the emissions of air pollutants from industrial processes. Int. J. Greenh. Gas Control 2012:10:310–328. https://doi.org/10.1016/j.ijggc.2012.05.02210.1016/j.ijggc.2012.05.022
  4. [4] Gardarsdottir S. O., Normann F., Andersson K., Johnsson F. Process evaluation of CO2 capture in three industrial case studies. Energy Procedia 2014:63:6565–6575. https://doi.org/10.1016/j.egypro.2014.11.69310.1016/j.egypro.2014.11.693
  5. [5] Kim J., Yu S., Yun S. T., Kim K. H., Shinn Y. J., Chae G. CO2 leakage detection in the near-surface above natural CO2-rich water aquifer using soil gas monitoring. Int. J. Greenh. Gas Control 2019:88:261–271. https://doi.org/10.1016/j.ijggc.2019.06.01510.1016/j.ijggc.2019.06.015
  6. [6] Cheng J., Dong H., Zhang H., Yuan L., Li H., Yue L., Hua J., Zhou J. Improving CH4 production and energy conversion from CO2 and H2 feedstock gases with mixed methanogenic community over Fe nanoparticles. Bioresour. Technol. 2020:314:123799. https://doi.org/10.1016/j.biortech.2020.12379910.1016/j.biortech.2020.12379932673781
  7. [7] Yang Z. Z., He L. N., Gao J., Liu A. H., Yu B. Carbon dioxide utilization with C-N bond formation: Carbon dioxide capture and subsequent conversion. Energy Environ. Sci. 2012:5:6602–6639. https://doi.org/10.1039/c2ee02774g10.1039/c2ee02774g
  8. [8] Murcia Valderrama M. A., van Putten R. J., Gruter G. J. M. The potential of oxalic – and glycolic acid based polyesters (review). Towards CO2 as a feedstock (Carbon Capture and Utilization – CCU). Eur. Polym. J. 2019: 119:445–468. https://doi.org/10.1016/j.eurpolymj.2019.07.03610.1016/j.eurpolymj.2019.07.036
  9. [9] Muthuraj R., Mekonnen T. Recent progress in carbon dioxide (CO2) as feedstock for sustainable materials development: Co-polymers and polymer blends. Polymer 2018:145:348–373. https://doi.org/10.1016/j.polymer.2018.04.07810.1016/j.polymer.2018.04.078
  10. [10] Bai H., Cheng T., Li S., Zhou Z., Yang H., Li J., Xie M., Ye J., Ji Y., Li Y., Zhou Z., Sun S., Zhang B., Peng H. Controllable CO adsorption determines ethylene and methane productions from CO2 electroreduction. Sci. Bull. 2020:66(1):62–68. https://doi.org/10.1016/j.scib.2020.06.02310.1016/j.scib.2020.06.023
  11. [11] Universities team up with plan to develop low-carbon aviation fuel from recycled CO2 and bio-waste. Renew. Energy Focus 2016:17(2):50–55. https://doi.org/10.1016/j.ref.2016.02.00810.1016/j.ref.2016.02.008
  12. [12] Adhikari B. M., Truong T., Prakash S., Bansal N., Bhandari B. Impact of incorporation of CO2 on the melting, texture and sensory attributes of soft-serve ice cream. Int. Dairy J. 2020:109:104789. https://doi.org/10.1016/j.idairyj.2020.10478910.1016/j.idairyj.2020.104789
  13. [13] Di Caprio M. R., Brondi C., Di Maio E., Mosciatti T., Cavalca S., Parenti V., Iannace S., Mensitieri G., Musto P. Polyurethane synthesis under high-pressure CO2, a FT-NIR study. Eur. Polym. J. 2019:115:364–374. https://doi.org/10.1016/j.eurpolymj.2019.03.04710.1016/j.eurpolymj.2019.03.047
  14. [14] Shijian L., Dongya Z., Quanmin Z. CO2 absorber coupled with double pump CO2 capture technology for coal-fired flue gas. Energy Procedia 2018:154:163–170. https://doi.org/10.1016/j.egypro.2018.11.02710.1016/j.egypro.2018.11.027
  15. [15] European Comission, Technical Guidance Handbook: Setting up and implementing results-based carbon farming mechanisms in the EU (2021), Brussel, 2021.
  16. [16] Gancone A., Pubule J., Blumberga D. Valorization methodology for agriculture sector climate change mitigation measures. Environ. Clim. Technol. 2021:25(1):944–954. https://doi.org/10.2478/rtuect-2021-007110.2478/rtuect-2021-0071
  17. [17] European Comission. The European Green Deal.
  18. [18] Sujatha M. P., Lathika C., Smitha J. K. Sustainable and efficient utilization of weed biomass for carbon farming and productivity enhancement: A simple, rapid and ecofriendly approach in the context of climate change scenario, Environ. Challenges. 2021:4:100150. https://doi.org/10.1016/J.ENVC.2021.10015010.1016/j.envc.2021.100150
  19. [19] Van Eck N. J., Waltman L. VOSviewer Manual version 1.6.10, CWTS Meaningful Metrics. 2019.
  20. [20] LVĢMC. 2020. gadā iesniegtās siltumnīcefekta gāzu inventarizācijas kopsavilkums. (Summary of the greenhouse gas inventory submitted in 2020). ([Online]. [Accessed: 18 January 2021]. Available: https://www.meteo.lv/fs/CKFinderJava/userfiles/files/Vide/Klimats/Majas_lapai_LVGMC_2020_seginvkopsavilkums.pdf (In Latvian).
  21. [21] IPCC, IPCC – Task Force on National Greenhouse Gas Inventories, 2. 2006. [Online]. [Accessed: 20 April 2020]. Available: https://www.ipcc-nggip.iges.or.jp/public/2006gl/
  22. [22] CSP. Latvia’s energy balance in 2017. (Latvijas energobilance 2017. gadā). 2018. [Online]. [Accessed: 20 April 2020]. Available: www.csb.gov.lv (In Latvian).
  23. [23] Allen J. John Deere develops fully electric, autonomous tractor | Industrial Vehicle Technology International. [Online]. [Accessed: 20 April 2020]. Available: https://www.ivtinternational.com/news/agriculture/john-deeredevelops-fully-electric-autonomous-tractor.html
  24. [24] Blanco-Canqui H. Crop Residue Removal for Bioenergy Reduces Soil Carbon Pools: How Can We Offset Carbon Losses? Bioenergy Res. 2013:6:358–371. https://doi.org/10.1007/s12155-012-9221-310.1007/s12155-012-9221-3
  25. [25] Šarauskis E., Buragiene S., Masilionyte L., Romaneckas K., Avižienyte D., Sakalauskas A. Energy balance, costs and CO2 analysis of tillage technologies in maize cultivation. Energy 2014:69:227–235. https://doi.org/10.1016/j.energy.2014.02.09010.1016/j.energy.2014.02.090
  26. [26] Hoffman E., Cavigelli M. A., Camargo G., Ryan M., Ackroyd V. J., Richard T. L., Mirsky S. Energy use and greenhouse gas emissions in organic and conventional grain crop production: Accounting for nutrient inflows. Agric. Syst. 2018:162:89–96. https://doi.org/10.1016/j.agsy.2018.01.02110.1016/j.agsy.2018.01.021
  27. [27] Augšņu degradācijas procesu, augsni saudzējošu lauksaimniecības paņēmienu un ar augsni saistītu politikas pasākumu sasaiste (Linking soil degradation processes, soil-conserving agricultural practices and soil-related policies). [Online]. [Accessed: May 1, 2020]. Available: https://esdac.jrc.ec.europa.eu/projects/SOCO/FactSheets/LVFactSheet.pdf
  28. [28] Sørensen C. G., Nielsen V. Operational analyses and model comparison of machinery systems for reduced tillage, Biosyst. Eng. 2005:92(2):143–155. https://doi.org/10.1016/j.biosystemseng.2005.06.01410.1016/j.biosystemseng.2005.06.014
  29. [29] Saldukaitė L., Šarauskis E., Lekavičienė K., Savickas D. Predicting energy efficiency and greenhouse gases reduction potential under different tillage management and farm size scenarios for winter wheat production. Sustain. Energy Technol. Assessments 2020:42:42100841. https://doi.org/10.1016/j.seta.2020.10084110.1016/j.seta.2020.100841
  30. [30] Tabatabaeefar A., Emamzadeh H., Varnamkhasti M. G., Rahimizadeh R., Karimi M. Comparison of energy of tillage systems in wheat production. Energy 2009:34(1):41–45. https://doi.org/10.1016/j.energy.2008.09.02310.1016/j.energy.2008.09.023
  31. [31] Miltiņš R. Swedbank Business Network. Jaunās tehnoloģijas lauksaimniecībā = domāšanas maiņa. (New technologies in agriculture = change in thinking). [Online]. [Accessed January 18, 2021]. Available: https://businessnetwork.lv/ievads/izaugsme/raimonds-miltins-lauksaimniecibas-tehnologijas-53066 (In Latvian).
  32. [32] Bumbiere K., Pubule J., Blumberga D. What Will Be the Future of Biogas Sector? Environ. Clim. Technol. 2021:25(1):295–305. https://doi.org/10.2478/RTUECT-2021-002110.2478/rtuect-2021-0021
  33. [33] Latvijas Vides, Ģeoloģijas un Meteoroloģijas Centrs. 2022. gada siltumnīcefekta gāzu inventarizācijas kopsavilkums. Versija: Iesniegts ANO Vispārējai konvencijai par klimata pārmaiņām. (Center of Environment, Geology and Meteorology of Latvia. 2022 Greenhouse Gas Inventory Summary. Version: Submitted to the UN Framework Convention on Climate Change). [Online]. [Accessed: 15.04.2022}. Available: https://videscentrs.lvgmc.lv/files/Klimats/SEG_emisiju_un_ETS_monitorings/Zinojums_par_klimatu/Iesniegto_SEG_prognozu_kopsavilkumi/Majas_lapai_LVGMC_2021_segprognozes.pdf
  34. [34] Indzere Z., Kubule A., Zihare L., Vamza I., Blumberga D. Analysis of Bioeconomy Affeting Factors - Climate Change and Production. Env. Clim. Technol. 2021:25(1):1293–1304. https://doi.org/10.2478/rtuect-2021-009810.2478/rtuect-2021-0098
  35. [35] Yong Z. J., Bashir M. J. K., Hassan M. S. Biogas and biofertilizer production from organic fraction municipal solid waste for sustainable circular economy and environmental protection in Malaysia. Sci. Total Environ. 2021:776:145961. https://doi.org/10.1016/j.scitotenv.2021.14596110.1016/j.scitotenv.2021.14596133640552
  36. [36] Timonen K., Sinkko T., Luostarinen S., Tampio E., Joensuu K. LCA of anaerobic digestion: Emission allocation for energy and digestate. J. Clean. Prod. 2019:235:1567–1579. https://doi.org/10.1016/j.jclepro.2019.06.08510.1016/j.jclepro.2019.06.085
  37. [37] Gancone A., Bumbiere K., Pubule J., Blumberga D. Sustainable biogas application in energy sector. IEEE. 2020. 10.1109/RTUCON51174.2020.931659310.1109/RTUCON51174.2020.9316593
  38. [38] Wilken D., Strippel F., Hofmann F., Maciejczyk M., Klinkmüller L., Wagner L., Bontempo G., Münch J., Scheidl S., Conton M., Deremince B., Walter R., Zetsche N., Findeisen C. Biogas to Biomethane, Unido. 2017. [Online]. [Accessed February 23, 2021]. Available: https://issuu.com/fachverband.biogas/docs/btb
  39. [39] Blumberga D., Dzene I., Al Sedi T., Rucs D., Prasls H., Ketners M. Finstervalders T., Folka S. Biogas: Handbook. 2009. https://ortus.rtu.lv/science/en/publications/5847
  40. [40] Brémond U., Bertrandias A., Steyer J. P., Bernet N., Carrere H. A vision of European biogas sector development towards 2030: Trends and challenges. J. Clean. Prod. 2021:287. https://doi.org/10.1016/j.jclepro.2020.12506510.1016/j.jclepro.2020.125065
  41. [41] Latvijas Biogāzes asociācija. (Latvian association of biogas). [Online]. [Accessed February 23, 2021]. Available: http://www.latvijasbiogaze.lv/ (In Latvian).
  42. [42] Meyer A. K. P., Ehimen E. A., Holm-Nielsen J. B. Future European biogas: Animal manure, straw and grass potentials for a sustainable European biogas production. Biomass and Bioenergy 2018:111:154–164. https://doi.org/10.1016/j.biombioe.2017.05.01310.1016/j.biombioe.2017.05.013
  43. [43] Kaldis F., Cysneiros D., Day J., Karatzas KAG., Chatzifragkou A. Anaerobic Digestion of Steam-Exploded Wheat Straw and Co-Digestion Strategies for Enhanced Biogas Production. App. Sc. Basel. 2020:10:22.10.3390/app10228284
  44. [44] Muizniece I., Zihare L., Pubule J., Blumberga D. Circular Economy and Bioeconomy Interaction Development as Future for Rural Regions. Case Study of Aizkraukle Region in Latvia. Environ. Clim. Technol. 2019:23(3):129–146. https://doi.org/10.2478/rtuect-2019-008410.2478/rtuect-2019-0084
  45. [45] Lauka D., Slisane D., Ievina L., Muizniece I., Blumberga D. When Bioeconomy Development Becomes a Biomass Energy Competitor. Environ. Clim. Technol. 2019:23(3):347–359. https://doi.org/10.2478/rtuect-2019-010010.2478/rtuect-2019-0100
  46. [46] Zihare L., Spalvins K., Blumberga D. Multi criteria analysis for products derived from agro-industrial by-products. Energy Procedia 2018:147:452–457. https://doi.org/10.1016/j.egypro.2018.07.04510.1016/j.egypro.2018.07.045
  47. [47] Esteves E. M. M., Herrera A. M. N., Esteves V. P. P., Do R. V. Morgado C. Life cycle assessment of manure biogas production: A review. Journal of Cleaner Production 2019:219:411–423. https://doi.org/10.1016/j.jclepro.2019.02.09110.1016/j.jclepro.2019.02.091
  48. [48] EMEP. EEA. Atskaites ziņojums un tehniski ekonomiskais pamatojums ‘Biogāzes attīstības iespējas Madonas rajonā’. (Reference report and technical-economic justification ‘Biogas development opportunities in Madona district’) 2019. (In Latvian).
  49. [49] Cavinato C., Fatone F., Bolzonella D., Pavan P. Thermophilic anaerobic co-digestion of cattle manure with agrowastes and energy crops: Comparison of pilot and full scale experiences. Bioresour. Technol 2010:101(2):545–550. https://doi.org/10.1016/j.biortech.2009.08.04310.1016/j.biortech.2009.08.04319747821
  50. [50] Shah F. A., Mahmood Q., Rashid N., Pervez A., Raja I. A., Shah M. M. Co-digestion, pretreatment and digester design for enhanced methanogenesis. Renew. Sustain. Energy Rev. 2015:42:627–642. https://doi.org/10.1016/j.rser.2014.10.05310.1016/j.rser.2014.10.053
  51. [51] Bumbiere K., Gancone A., Pubule J., Kirsanovs V., Vasarevicius S., Blumberga D. Ranking of Bioresources for Biogas Production. Environ. Clim. Technol. 2020:24(1):368–377. https://doi.org/10.2478/RTUECT-2020-002110.2478/rtuect-2020-0021
  52. [52] Biogāzes enerģija. LAEF. (Biogas energy). [Online]. [Accessed: January 3, 2020]. Available: https://www.laef.lv/lv/biogaze/
  53. [53] Baumber A., Metternicht G., Cross R., Ruoso L. E., Cowie A. L., Waters C. Promoting co-benefits of carbon farming in Oceania: Applying and adapting approaches and metrics from existing market-based schemes. Ecosyst. Serv. 2019:39:100982. https://doi.org/10.1016/J.ECOSER.2019.10098210.1016/j.ecoser.2019.100982
  54. [54] EC courtesy translation LV NECP NATIONAL ENERGY AND CLIMATE PLAN OF LATVIA 2021–2030, n.d.
  55. [55] Decarbonisation Pathways – Eurelectric – Powering People. [Online]. [Accessed: March 4, 2021]. Available: https://www.eurelectric.org/decarbonisation-pathways/
  56. [56] Scarlat N., Dallemand J. F., Fahl F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018:129:457–472. https://doi.org/10.1016/j.renene.2018.03.00610.1016/j.renene.2018.03.006
  57. [57] Yu Q., Liu R., Li K., Ma R. A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China. Renewable and Sustainable Energy Reviews 2019:107:51–58. https://doi.org/10.1016/j.rser.2019.02.02010.1016/j.rser.2019.02.020
  58. [58] Fernández-González J. M., Martín-Pascual J., Zamorano M. Biomethane injection into natural gas network vs composting and biogas production for electricity in Spain: An analysis of key decision factors. Sustain. Cities Soc. 2020:60:102242. https://doi.org/10.1016/j.scs.2020.10224210.1016/j.scs.2020.102242
  59. [59] Hosseinipour S. A., Mehrpooya M. Comparison of the biogas upgrading methods as a transportation fuel. Renew. Energy 2019:130:641–655. https://doi.org/10.1016/j.renene.2018.06.08910.1016/j.renene.2018.06.089
  60. [60] Li H., Mehmood D., Thorin E., Yu Z. Biomethane Production Via Anaerobic Digestion and Biomass Gasification. Energy Procedia 2017:105:1172–1177. https://doi.org/10.1016/j.egypro.2017.03.49010.1016/j.egypro.2017.03.490
  61. [61] Khan I. Waste to biogas through anaerobic digestion: Hydrogen production potential in the developing world - A case of Bangladesh. Int. J. Hydrogen Energy 2020:45(32):15951–15962. https://doi.org/10.1016/j.ijhydene.2020.04.03810.1016/j.ijhydene.2020.04.038
  62. [62] Kim C., Kim J., Joo S., Bu Y., Liu M., Cho J., Kim G. Efficient CO2 Utilization via a Hybrid Na- CO2 System Based on CO2 Dissolution. IScience 2018:9:278–285. https://doi.org/10.1016/j.isci.2018.10.02710.1016/j.isci.2018.10.027625836530447646
  63. [63] Lecker B., Illi L., Lemmer A., Oechsner H. Biological hydrogen methanation – A review. Bioresour. Technol. 2017:245:1220–1228. https://doi.org/10.1016/j.biortech.2017.08.17610.1016/j.biortech.2017.08.17628893503
  64. [64] Liquid Hydrogen Outline. [Online]. [Accessed: August 27, 2020]. Available: https://www.idealhy.eu/index.php?page=lh2_outline
  65. [65] Encyclopedia of Soils in the Environment. ScienceDirect. [Online]. [Accessed: April 13, 2022]. Available: https://www-sciencedirect-com.resursi.rtu.lv/referencework/9780123485304/encyclopedia-of-soils-in-theenvironment
  66. [66] Buschmann A. H., Chopin T., Neori A., Halling C., Troell M., Hernández-González M. C., Aranda C. Ecological engineering in aquaculture: towards a better waste management in Western World mariculture. Encycl. Ecol. 2008:2463–2475. https://doi.org/10.1016/B978-008045405-4.00065-310.1016/B978-008045405-4.00065-3
  67. [67] Jamnadass R., Langford K., Anjarwalla P., Mithöfer D. Public–Private Partnerships in Agroforestry. Encycl. Agric. Food Syst. 2014:544–564. https://doi.org/10.1016/B978-0-444-52512-3.00026-710.1016/B978-0-444-52512-3.00026-7
  68. [68] Eddy W. C., Yang W. H. Improvements in soil health and soil carbon sequestration by an agroforestry for food production system. Agric. Ecosyst. Environ. 2022:333:107945. https://doi.org/10.1016/J.AGEE.2022.10794510.1016/j.agee.2022.107945
  69. [69] Sivanpillai R., Shroder J. F. Biological and Environmental Hazards, Risks, and Disasters. Biol. Environ. Hazards, Risks, Disasters. Elsevier 2015:1–466. https://doi.org/10.1016/C2011-0-07027-810.1016/C2011-0-07027-8
  70. [70] Agricology. Agroforestry for livestock systems. [Online]. [Accessed: April 13, 2022]. Available: https://www.agricology.co.uk/resources/agroforestry-livestock-systems
  71. [71] Gupta J., Kumari M., Mishra A., Swati, M. Akram, I. S. Thakur. Agro-forestry waste management. A review. Chemosphere 2022:287:132321. https://doi.org/10.1016/J.CHEMOSPHERE.2021.13232110.1016/j.chemosphere.2021.13232134563778
  72. [72] TOPSIS method algorithm. Download Scientific Diagram. [Online]. [Accessed: February 29, 2020]. Available: https://www.researchgate.net/figure/TOPSIS-method-algorithm_fig4_253953426
  73. [73] Roszkowska E. Multi-criteria decision making models by applying the topsis method to crisp and interval data. 2011. [Online]. [Accessed: July 20, 2022]. Available: https://mcdm.ue.katowice.pl/files/papers/mcdm11(6)_11.pdf
  74. [74] Gancone A., Bumbiere K., Pubule J., Blumberga D. Sustainable biogas application in energy sector. 2020 IEEE 61st Annu. Int. Sci. Conf. Power Electr. Eng. Riga Tech. Univ. RTUCON 2020. https://doi.org/10.1109/RTUCON51174.2020.931659310.1109/RTUCON51174.2020.9316593
  75. [75] Pielietotās augsnes apstrādes metodes dažāda ekonomiskā lieluma lauku saimniecībās. (Applied methods of soil treatment in farms of different economic sizes). [Online]. [accessed: July 20, 2022]. Available: https://data.stat.gov.lv/pxweb/lv/OSP_OD/OSP_OD__skait_apsek__metodes__laukstrukt_13/LSSA13_VI01.px/table/tableViewLayout1/ (In Latvian).
  76. [76] KLPSP_projekts_20220118_SFC2021. (Project of Latvian KLPSP strategic plan for 2023–2027). In Latvian.
  77. [77] Valsts zemes dienests. Zemes sadalījums zemes lietošanas veidos. (State Land Service. Distribution of land in land use types). [Online]. [Accessed: July 20, 2022]. Available: https://www.vzd.gov.lv/lv/zemes-sadalijums-zemeslietosanas-veidos (In Latvian).
  78. [78] Latvijā plāno atbalstīt vien no atkritumiem ražotu biogāzi, rosinot ražotājus kļūt par sanitāriem. (Latvia plans to support biogas produced only from waste, encouraging producers to become sanitary). [Online]. [Accessed: September 14, 2022]. https://www.la.lv/biogazes-razotajus-rosinas-klut-par-sanitariem (In Latvian).
  79. [79] Zaļais izrāviens vai jauns OIK? Latvija gatavojas biometāna ražošanai. (Green breakthrough or new OIK? Latvia is preparing for biomethane production). [Online]. [Accessed: September 14, 2022]. Available: https://www.lsm.lv/raksts/zinas/zinu-analize/zalais-izraviens-vai-jauns-oik-latvija-gatavojas-biometanarazosanai.a394764/ (In Latvian).
  80. [80] Elektriskā jauda un saražotā elektroenerģija no atjaunīgiem energoresursiem – Atjaunīgo energoresursu elektrostaciju veids un Laika periods. (Electric power and produced electricity from renewable energy resources – Type of renewable energy power plants and Time period). [Online]. [Accessed September 14, 2022]. Available: https://data.stat.gov.lv/pxweb/lv/OSP_PUB/START__NOZ__EN__ENA/ENA040/table/tableViewLayout1/ (In Latvian).
  81. [81] Bumbiere K., Gancone A., Pubule J., Blumberga D. Carbon balance of biogas production from maize in latvian conditions. Agron. Res. 2021:19(1):687–697. https://doi.org/10.15159/AR.21.085
  82. [82] Dabasgāzes imports un patēriņš (milj. m3) – Rādītāji un Laika periods. (Natural gas import and consumption (million m3) – Indicators and Time period). [Online]. [Accessed September 11, 2022]. Available: https://data.stat.gov.lv/pxweb/lv/OSP_PUB/START__NOZ__EN__ENB/ENB020m/table/tableViewLayout1/ (In Latvian).
  83. [83] US EPA. Greenhouse Gas Equivalencies Calculator. [Online]. [Accessed September 11, 2022]. https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator#results
  84. [84] European Biogas Association. Avoided emissions from biogas and biomethane can lead to a negative carbon footprint. [Online]. [Accessed September 9, 2022]. Available: https://www.europeanbiogas.eu/avoided-emissionsfrom-biogas-and-biomethane-can-lead-to-a-negative-carbon-footprint/ (In Latvian).
  85. [85] O’Shea R., Lin R., Wall D. M., Browne J. D., Murphy J. D. Using biogas to reduce natural gas consumption and greenhouse gas emissions at a large distillery. Appl. Energy. 2020:279:115812. https://doi.org/10.1016/J.APENERGY.2020.11581210.1016/j.apenergy.2020.115812
  86. [86] Leppäkoski L., Marttila M. P., Uusitalo V., Levänen J., Halonen V., Mikkilä M. H. Assessing the carbon footprint of biochar from willow grown on marginal lands in Finland. Sustain. 2021:13(18):10097. https://doi.org/10.3390/su13181009710.3390/su131810097
  87. [87] 2020. gadā iesniegtās siltumnīcefekta gāzu inventarizācijas kopsavilkums. (Summary of the greenhouse gas inventory submitted in 2020). [Online]. [Accessed: September 13, 2022]. Available: https://www.meteo.lv/fs/CKFinderJava/userfiles/files/Vide/Klimats/Majas_lapai_LVGMC_2020_seginvkopsavilkums.pdf (In Latvian).
  88. [88] Paustian K., Larson E., Kent J., Marx E., Swan A. Soil C Sequestration as a Biological Negative Emission Strategy. Front. Clim. 2019. https://doi.org/10.3389/fclim.2019.0000810.3389/fclim.2019.00008
DOI: https://doi.org/10.2478/rtuect-2022-0068 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 898 - 916
Published on: Oct 11, 2022
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Ketija Bumbiere, Fabian Andres Diaz Sanchez, Jelena Pubule, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.