[2] Dolge K., Blumberga D. Key Factors Influencing the Achievement of Climate Neutrality Targets in the Manufacturing Industry: LMDI Decomposition Analysis. Energies 2021:14(23):8006. https://doi.org/10.3390/EN1423800610.3390/en14238006
[5] Kim J., Yu S., Yun S. T., Kim K. H., Shinn Y. J., Chae G. CO2 leakage detection in the near-surface above natural CO2-rich water aquifer using soil gas monitoring. Int. J. Greenh. Gas Control 2019:88:261–271. https://doi.org/10.1016/j.ijggc.2019.06.01510.1016/j.ijggc.2019.06.015
[7] Yang Z. Z., He L. N., Gao J., Liu A. H., Yu B. Carbon dioxide utilization with C-N bond formation: Carbon dioxide capture and subsequent conversion. Energy Environ. Sci. 2012:5:6602–6639. https://doi.org/10.1039/c2ee02774g10.1039/c2ee02774g
[8] Murcia Valderrama M. A., van Putten R. J., Gruter G. J. M. The potential of oxalic – and glycolic acid based polyesters (review). Towards CO2 as a feedstock (Carbon Capture and Utilization – CCU). Eur. Polym. J. 2019: 119:445–468. https://doi.org/10.1016/j.eurpolymj.2019.07.03610.1016/j.eurpolymj.2019.07.036
[10] Bai H., Cheng T., Li S., Zhou Z., Yang H., Li J., Xie M., Ye J., Ji Y., Li Y., Zhou Z., Sun S., Zhang B., Peng H. Controllable CO adsorption determines ethylene and methane productions from CO2 electroreduction. Sci. Bull. 2020:66(1):62–68. https://doi.org/10.1016/j.scib.2020.06.02310.1016/j.scib.2020.06.023
[15] European Comission, Technical Guidance Handbook: Setting up and implementing results-based carbon farming mechanisms in the EU (2021), Brussel, 2021.
[18] Sujatha M. P., Lathika C., Smitha J. K. Sustainable and efficient utilization of weed biomass for carbon farming and productivity enhancement: A simple, rapid and ecofriendly approach in the context of climate change scenario, Environ. Challenges. 2021:4:100150. https://doi.org/10.1016/J.ENVC.2021.10015010.1016/j.envc.2021.100150
[20] LVĢMC. 2020. gadā iesniegtās siltumnīcefekta gāzu inventarizācijas kopsavilkums. (Summary of the greenhouse gas inventory submitted in 2020). ([Online]. [Accessed: 18 January 2021]. Available: https://www.meteo.lv/fs/CKFinderJava/userfiles/files/Vide/Klimats/Majas_lapai_LVGMC_2020_seginvkopsavilkums.pdf (In Latvian).
[21] IPCC, IPCC – Task Force on National Greenhouse Gas Inventories, 2. 2006. [Online]. [Accessed: 20 April 2020]. Available: https://www.ipcc-nggip.iges.or.jp/public/2006gl/
[22] CSP. Latvia’s energy balance in 2017. (Latvijas energobilance 2017. gadā). 2018. [Online]. [Accessed: 20 April 2020]. Available: www.csb.gov.lv (In Latvian).
[26] Hoffman E., Cavigelli M. A., Camargo G., Ryan M., Ackroyd V. J., Richard T. L., Mirsky S. Energy use and greenhouse gas emissions in organic and conventional grain crop production: Accounting for nutrient inflows. Agric. Syst. 2018:162:89–96. https://doi.org/10.1016/j.agsy.2018.01.02110.1016/j.agsy.2018.01.021
[29] Saldukaitė L., Šarauskis E., Lekavičienė K., Savickas D. Predicting energy efficiency and greenhouse gases reduction potential under different tillage management and farm size scenarios for winter wheat production. Sustain. Energy Technol. Assessments 2020:42:42100841. https://doi.org/10.1016/j.seta.2020.10084110.1016/j.seta.2020.100841
[31] Miltiņš R. Swedbank Business Network. Jaunās tehnoloģijas lauksaimniecībā = domāšanas maiņa. (New technologies in agriculture = change in thinking). [Online]. [Accessed January 18, 2021]. Available: https://businessnetwork.lv/ievads/izaugsme/raimonds-miltins-lauksaimniecibas-tehnologijas-53066 (In Latvian).
[33] Latvijas Vides, Ģeoloģijas un Meteoroloģijas Centrs. 2022. gada siltumnīcefekta gāzu inventarizācijas kopsavilkums. Versija: Iesniegts ANO Vispārējai konvencijai par klimata pārmaiņām. (Center of Environment, Geology and Meteorology of Latvia. 2022 Greenhouse Gas Inventory Summary. Version: Submitted to the UN Framework Convention on Climate Change). [Online]. [Accessed: 15.04.2022}. Available: https://videscentrs.lvgmc.lv/files/Klimats/SEG_emisiju_un_ETS_monitorings/Zinojums_par_klimatu/Iesniegto_SEG_prognozu_kopsavilkumi/Majas_lapai_LVGMC_2021_segprognozes.pdf
[39] Blumberga D., Dzene I., Al Sedi T., Rucs D., Prasls H., Ketners M. Finstervalders T., Folka S. Biogas: Handbook. 2009. https://ortus.rtu.lv/science/en/publications/5847
[41] Latvijas Biogāzes asociācija. (Latvian association of biogas). [Online]. [Accessed February 23, 2021]. Available: http://www.latvijasbiogaze.lv/ (In Latvian).
[43] Kaldis F., Cysneiros D., Day J., Karatzas KAG., Chatzifragkou A. Anaerobic Digestion of Steam-Exploded Wheat Straw and Co-Digestion Strategies for Enhanced Biogas Production. App. Sc. Basel. 2020:10:22.10.3390/app10228284
[44] Muizniece I., Zihare L., Pubule J., Blumberga D. Circular Economy and Bioeconomy Interaction Development as Future for Rural Regions. Case Study of Aizkraukle Region in Latvia. Environ. Clim. Technol. 2019:23(3):129–146. https://doi.org/10.2478/rtuect-2019-008410.2478/rtuect-2019-0084
[48] EMEP. EEA. Atskaites ziņojums un tehniski ekonomiskais pamatojums ‘Biogāzes attīstības iespējas Madonas rajonā’. (Reference report and technical-economic justification ‘Biogas development opportunities in Madona district’) 2019. (In Latvian).
[53] Baumber A., Metternicht G., Cross R., Ruoso L. E., Cowie A. L., Waters C. Promoting co-benefits of carbon farming in Oceania: Applying and adapting approaches and metrics from existing market-based schemes. Ecosyst. Serv. 2019:39:100982. https://doi.org/10.1016/J.ECOSER.2019.10098210.1016/j.ecoser.2019.100982
[58] Fernández-González J. M., Martín-Pascual J., Zamorano M. Biomethane injection into natural gas network vs composting and biogas production for electricity in Spain: An analysis of key decision factors. Sustain. Cities Soc. 2020:60:102242. https://doi.org/10.1016/j.scs.2020.10224210.1016/j.scs.2020.102242
[65] Encyclopedia of Soils in the Environment. ScienceDirect. [Online]. [Accessed: April 13, 2022]. Available: https://www-sciencedirect-com.resursi.rtu.lv/referencework/9780123485304/encyclopedia-of-soils-in-theenvironment
[73] Roszkowska E. Multi-criteria decision making models by applying the topsis method to crisp and interval data. 2011. [Online]. [Accessed: July 20, 2022]. Available: https://mcdm.ue.katowice.pl/files/papers/mcdm11(6)_11.pdf
[75] Pielietotās augsnes apstrādes metodes dažāda ekonomiskā lieluma lauku saimniecībās. (Applied methods of soil treatment in farms of different economic sizes). [Online]. [accessed: July 20, 2022]. Available: https://data.stat.gov.lv/pxweb/lv/OSP_OD/OSP_OD__skait_apsek__metodes__laukstrukt_13/LSSA13_VI01.px/table/tableViewLayout1/ (In Latvian).
[77] Valsts zemes dienests. Zemes sadalījums zemes lietošanas veidos. (State Land Service. Distribution of land in land use types). [Online]. [Accessed: July 20, 2022]. Available: https://www.vzd.gov.lv/lv/zemes-sadalijums-zemeslietosanas-veidos (In Latvian).
[78] Latvijā plāno atbalstīt vien no atkritumiem ražotu biogāzi, rosinot ražotājus kļūt par sanitāriem. (Latvia plans to support biogas produced only from waste, encouraging producers to become sanitary). [Online]. [Accessed: September 14, 2022]. https://www.la.lv/biogazes-razotajus-rosinas-klut-par-sanitariem (In Latvian).
[79] Zaļais izrāviens vai jauns OIK? Latvija gatavojas biometāna ražošanai. (Green breakthrough or new OIK? Latvia is preparing for biomethane production). [Online]. [Accessed: September 14, 2022]. Available: https://www.lsm.lv/raksts/zinas/zinu-analize/zalais-izraviens-vai-jauns-oik-latvija-gatavojas-biometanarazosanai.a394764/ (In Latvian).
[80] Elektriskā jauda un saražotā elektroenerģija no atjaunīgiem energoresursiem – Atjaunīgo energoresursu elektrostaciju veids un Laika periods. (Electric power and produced electricity from renewable energy resources – Type of renewable energy power plants and Time period). [Online]. [Accessed September 14, 2022]. Available: https://data.stat.gov.lv/pxweb/lv/OSP_PUB/START__NOZ__EN__ENA/ENA040/table/tableViewLayout1/ (In Latvian).
[81] Bumbiere K., Gancone A., Pubule J., Blumberga D. Carbon balance of biogas production from maize in latvian conditions. Agron. Res. 2021:19(1):687–697. https://doi.org/10.15159/AR.21.085
[82] Dabasgāzes imports un patēriņš (milj. m3) – Rādītāji un Laika periods. (Natural gas import and consumption (million m3) – Indicators and Time period). [Online]. [Accessed September 11, 2022]. Available: https://data.stat.gov.lv/pxweb/lv/OSP_PUB/START__NOZ__EN__ENB/ENB020m/table/tableViewLayout1/ (In Latvian).
[83] US EPA. Greenhouse Gas Equivalencies Calculator. [Online]. [Accessed September 11, 2022]. https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator#results
[84] European Biogas Association. Avoided emissions from biogas and biomethane can lead to a negative carbon footprint. [Online]. [Accessed September 9, 2022]. Available: https://www.europeanbiogas.eu/avoided-emissionsfrom-biogas-and-biomethane-can-lead-to-a-negative-carbon-footprint/ (In Latvian).
[86] Leppäkoski L., Marttila M. P., Uusitalo V., Levänen J., Halonen V., Mikkilä M. H. Assessing the carbon footprint of biochar from willow grown on marginal lands in Finland. Sustain. 2021:13(18):10097. https://doi.org/10.3390/su13181009710.3390/su131810097
[87] 2020. gadā iesniegtās siltumnīcefekta gāzu inventarizācijas kopsavilkums. (Summary of the greenhouse gas inventory submitted in 2020). [Online]. [Accessed: September 13, 2022]. Available: https://www.meteo.lv/fs/CKFinderJava/userfiles/files/Vide/Klimats/Majas_lapai_LVGMC_2020_seginvkopsavilkums.pdf (In Latvian).