[1] Anderson R. G., Canadell J. G., Randerson J. T., Jackson R. B., Hungate B. A., Baldocchi D. D., Ban-Weiss G. A., Bonan G. B., Caldeira K., Cao L. Biophysical considerations in forestry for climate protection. Front. Ecol. Environ. 2011:9(3):174–182. https://doi.org/10.1890/090179
[2] Cramer W., Bondeau A., Woodward F. I., Prentice I. C., Betts R. A., Brovkin V., Cox P. M., Fisher V., Foley J. A., Friend A. D. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob. Chang. Biol. 2001:7(4):357–373. https://doi.org/10.1046/j.1365-2486.2001.00383.x
[4] Guo W., Ni X., Jing D., Li S. Spatial-temporal patterns of vegetation dynamics and their relationships to climate variations in Qinghai Lake Basin using MODIS time-series data. J. Geogr. Sci. 2014:24:1009–1021. https://doi.org/10.1007/s11442-014-1134-y
[5] Jackson R. B., Randerson J. T., Canadell J. G., Anderson R. G., Avissar R., Baldocchi D. D., Bonan G. B., Caldeira K., Diffenbaugh N. S., Field C. B. Protecting climate with forests. Environ. Res. Lett. 2008:3(4):044006. https://doi.org/10.1088/1748-9326/3/4/044006
[6] Theurillat J.-P., Guisan A. Potential impact of climate change on vegetation in the European Alps: a review. Clim. Change 2001:50:77–109. https://doi.org/10.1023/A:1010632015572
[7] Verbesselt J., Hyndman R., Newnham G., Culvenor D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010:114(1):106–115. https://doi.org/10.1016/j.rse.2009.08.014
[8] Wolters V., Silver W. L., Bignell D. E., Coleman D. C., Lavelle P., Van Der Putten W. H., De Ruiter P., Rusek J., Wall D. H., Wardle D. A. Effects of Global Changes on Above-and Belowground Biodiversity in Terrestrial Ecosystems: Implications for Ecosystem Functioning: We identify the basic types of interaction between vascular plants and soil biota; describe the sensitivity of each type to changes in species composition; and, within this framework, evaluate the potential consequences of global change drivers on ecosystem processes. Bioscience 2000:50(12):1089–1098. https://doi.org/10.1641/0006-3568(2000)050[1089:EOGCOA]2.0.CO;210.1641/0006-3568(2000)050[1089:EOGCOA]2.0.CO;2
[9] Chuai X., Huang X., Wang W., Bao G. NDVI, temperature and precipitation changes and their relationships with different vegetation types during 1998–2007 in Inner Mongolia, China. Int. J. Climatol. 2013:33(7):1696–1706. https://doi.org/10.1002/joc.3543
[10] Wang J., Rich P. M., Price K. P. Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. Int. J. Remote Sens. 2003:24(11):2345–2364. https://doi.org/10.1080/01431160210154812
[11] Badreldin N., Goossens R. Monitoring land use/land cover change using multi-temporal Landsat satellite images in an arid environment: a case study of El-Arish, Egypt. Arab. J. Geosci. 2014:7:1671–1681. https://doi.org/10.1007/s12517-013-0916-3
[12] Bagherzadeh A., Hoseini A. V., Totmaj L. H. The effects of climate change on normalized difference vegetation index (NDVI) in the Northeast of Iran. Model. Earth Syst. Environ. 2020:6:671–683. https://doi.org/10.1007/s40808-020-00724-x
[13] Cui L., Shi J. Temporal and spatial response of vegetation NDVI to temperature and precipitation in eastern China. J. Geogr. Sci. 2010:20:163–176. https://doi.org/10.1007/s11442-010-0163-4
[15] Schultz P., Halpert M. S. Global analysis of the relationships among a vegetation index, precipitation and land surface temperature. Int. J. Remote Sens. 1995:16(15):2755–2777. https://doi.org/10.1080/01431169508954590
[16] Zhang G., Xu X., Zhou C., Zhang H., Ouyang H. Responses of grassland vegetation to climatic variations on different temporal scales in Hulun Buir Grassland in the past 30 years. J. Geogr. Sci. 2011:21:634–650. https://doi.org/10.1007/s11442-011-0869-y
[17] Li X., Jia X., Dong G. Influence of desertification on vegetation pattern variations in the cold semi-arid grasslands of Qinghai-Tibet Plateau, North-west China. J. Arid Environ. 2006:64(3):505–522. https://doi.org/10.1016/j.jaridenv.2005.06.011
[18] Lucas R., Rowlands A., Brown A., Keyworth S., Bunting P. Rule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mapping. ISPRS J. Photogramm. Remote Sens. 2007:62(3):165–185. https://doi.org/10.1016/j.isprsjprs.2007.03.003
[19] Tong X., Wang K., Yue Y., Brandt M., Liu B., Zhang C., Liao C., Fensholt R. Quantifying the effectiveness of ecological restoration projects on long-term vegetation dynamics in the karst regions of Southwest China. Int. J. Appl. Earth Obs. Geoinf. 2017:54:105–113. https://doi.org/10.1016/j.jag.2016.09.013
[20] Xiao X., Wang Y., Jiang S., Ojima D. S., Bonham C. D. Interannual variation in the climate and above-ground biomass of Leymus chinense steppe and Stipa grandis steppe in the Xilin river basin, Inner Mongolia, China. J. Arid Environ. 1995:31(3):283–299. https://doi.org/10.1016/S0140-1963(05)80033-3
[21] Bradley B. A., Mustard J. F. Comparison of phenology trends by land cover class: a case study in the Great Basin, USA. Glob. Chang. Biol. 2008:14(2):334–346. https://doi.org/10.1111/j.1365-2486.2007.01479.x
[22] Frolking S., Palace M. W., Clark D., Chambers J. Q., Shugart H., Hurtt G. C. Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. J. Geophys. Res. Biogeosci. 2009:114(G2). https://doi.org/10.1029/2008JG000911
[23] Fu B., Burgher I. Riparian vegetation NDVI dynamics and its relationship with climate, surface water and groundwater. J. Arid Environ. 2015:113:59–68. https://doi.org/10.1016/j.jaridenv.2014.09.010
[24] Ghafarian Malamiri H. R., Rousta I., Olafsson H., Zare H., Zhang H. Gap-Filling of MODIS Time Series Land Surface Temperature (LST) Products Using Singular Spectrum Analysis (SSA). Atmosphere 2018:9(9):334. https://doi.org/10.3390/atmos9090334
[25] Guillevic P., Koster R., Suarez M., Bounoua L., Collatz G., Los S., Mahanama S. Influence of the interannual variability of vegetation on the surface energy balance—A global sensitivity study. J. Hydrometeorol. 2002:3:617–629. https://doi.org/10.1175/1525-7541(2002)003<0617:IOTIVO>2.0.CO;210.1175/1525-7541(2002)003<0617:IOTIVO>2.0.CO;2
[26] Gupta A., Moniruzzaman M., Hande A., Rousta I., Olafsson H., Mondal K. K. Estimation of particulate matter (PM2.5, PM10) concentration and its variation over urban sites in Bangladesh. SN Appl. Sci. 2020:2(1993):1–15. https://doi.org/10.1007/s42452-020-03829-1
[27] Höpfner C., Scherer D. Analysis of vegetation and land cover dynamics in north-western Morocco during the last decade using MODIS NDVI time series data. Biogeosciences 2011:8(11):3359–3373. https://doi.org/10.5194/bg-8-3359-2011
[28] Ludwig J. A., Bastin G. N., Chewings V. H., Eager R. W., Liedloff A. C. Leakiness: a new index for monitoring the health of arid and semiarid landscapes using remotely sensed vegetation cover and elevation data. Ecol. Indic. 2007:7(2):442–454. https://doi.org/10.1016/j.ecolind.2006.05.001
[29] Lunetta R. S., Knight J. F., Ediriwickrema J., Lyon J. G., Worthy L. D. Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens. Environ. 2006:105(2):142–154. https://doi.org/10.1016/j.rse.2006.06.018
[30] Moniruzzaman M., Roy A., Bhatt C. M., Gupta A., An N. T. T., Hassan M. R. Impact Analysis of Urbanization on Land Use Land Cover Change for Khulna City, Bangladesh Using Temporal Landsat Imagery. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2018:XLII-5:757–760. https://doi.org/10.5194/isprs-archives-XLII-5-757-2018
[31] Mushore T. D., Dube T., Manjowe M., Gumindoga W., Chemura A., Rousta I., Odindi J., Mutanga O. Remotely sensed retrieval of Local Climate Zones and their linkages to land surface temperature in Harare metropolitan city Zimbabwe. Urban Clim. 2019:27:259–271. https://doi.org/10.1016/j.uclim.2018.12.006
[32] Tucker C. J., Slayback D. A., Pinzon J. E., Los S. O., Myneni R. B., Taylor M. G. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Int. J. Biometeorol. 2001:45:184–190. https://doi.org/10.1007/s00484-001-0109-811769318
[33] White A. B., Kumar P., Tcheng D. A data mining approach for understanding topographic control on climate-induced inter-annual vegetation variability over the United States. Remote Sens. Environ. 2005:98:1–20. https://doi.org/10.1016/j.rse.2005.05.017
[34] Zhao B., Yan Y., Guo H., He M., Gu Y., Li B. Monitoring rapid vegetation succession in estuarine wetland using time series MODIS-based indicators: an application in the Yangtze River Delta area. Ecol. Indic. 2009:9(2):346–356. https://doi.org/10.1016/j.ecolind.2008.05.009
[35] Justice C. O., Vermote E., Townshend J. R., Defries R., Roy D. P., Hall D. K., Salomonson V. V., Privette J. L., Riggs G., Strahler A. The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens. 1998:36:1228–1249. https://doi.org/10.1109/36.701075
[36] Dineshkumar C., Nitheshnirmal S., Bhardwaj A., Priyadarshini K. N. Phenological Monitoring of Paddy Crop Using Time Series MODIS Data. Proceedings 2019:24(1):06205. https://doi.org/10.3390/IECG2019-06205
[37] Rousta I., Olafsson H., Moniruzzaman M., Zhang H., Liou Y.-A., Mushore T. D., Gupta A. Impacts of Drought on Vegetation Assessed by Vegetation Indices and Meteorological Factors in Afghanistan. Remote Sens. 2020:12(15):2433. https://doi.org/10.3390/rs12152433
[38] Fensholt R., Sandholt I., Rasmussen M. S. Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens. Environ. 2004:91(3–4):490–507. https://doi.org/10.1016/j.rse.2004.04.009
[39] Ichii K., Kawabata A., Yamaguchi Y. Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982-1990. Int. J. Remote Sens. 2002:23(18):3873–3878. https://doi.org/10.1080/01431160110119416
[40] Pettorelli N., Vik J. O., Mysterud A., Gaillard J.-M., Tucker C. J., Stenseth N. C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005:20(9):503–510. https://doi.org/10.1016/j.tree.2005.05.01116701427
[41] Reed B. C., Brown J. F., VanderZee D., Loveland T.R., Merchant J.W., Ohlen D.O. Measuring phenological variability from satellite imagery. J. Veg. Sci. 1994:5(5):703–714. https://doi.org/10.2307/3235884
[42] Faisal B., Rahman H., Sharifee N. H., Sultana N., Islam M. I., Ahammad T. Remotely Sensed Boro Rice Production Forecasting Using MODIS-NDVI: A Bangladesh Perspective. AgriEngineering 2019:1(3):356–375. https://doi.org/10.3390/agriengineering1030027
[43] Rousta I., Olafsson H., Moniruzzaman M., Ardö J., Zhang H., Mushore T. D., Shahin S., Azim S. The 2000–2017 drought risk assessment of the western and southwestern basins in Iran. Model. Earth Syst. Environ. 2020:6:1201–1221. https://doi.org/10.1007/s40808-020-00751-8
[44] Schnur M. T., Xie H., Wang X. Estimating root zone soil moisture at distant sites using MODIS NDVI and EVI in a semi-arid region of southwestern USA. Ecol. Inform. 2010:5(5):400–409. https://doi.org/10.1016/j.ecoinf.2010.05.001
[45] Busetto L., Meroni M., Colombo R. Combining medium and coarse spatial resolution satellite data to improve the estimation of sub-pixel NDVI time series. Remote Sens. Environ. 2008:112:118–131. https://doi.org/10.1016/j.rse.2007.04.004
[46] Sims N. C., Colloff M. J. Remote sensing of vegetation responses to flooding of a semi-arid floodplain: Implications for monitoring ecological effects of environmental flows. Ecol. Indic. 2012:18:387–391. https://doi.org/10.1016/j.ecolind.2011.12.007
[47] Cho M. A., Skidmore A., Corsi F., Van Wieren S. E., Sobhan I. Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. Int. J. Appl. Earth Obs. Geoinf. 2007:9(4):414–424. https://doi.org/10.1016/j.jag.2007.02.001
[49] Goward S. N., Dye D. G. Evaluating North American net primary productivity with satellite observations. Adv. Space Res. 1987:7(11):165–174. https://doi.org/10.1016/0273-1177(87)90308-5
[50] Nielsen T. T., Adriansen H. J. L. D. Government policies and land degradation in the Middle East. Land Degrad. Dev. 2005:16(2):151–161. https://doi.org/10.1002/ldr.677
[51] Barbosa H., Huete A., Baethgen W. A 20-year study of NDVI variability over the Northeast Region of Brazil. J. Arid Environ. 2006:67(2):288–307. https://doi.org/10.1016/j.jaridenv.2006.02.022
[52] Gaughan A. E., Stevens F. R., Gibbes C., Southworth J., Binford M. W. Linking vegetation response to seasonal precipitation in the Okavango–Kwando–Zambezi catchment of southern Africa. Int. J. Remote Sens. 2012:33(21):6783–6804. https://doi.org/10.1080/01431161.2012.692831
[53] Ji L., Peters A. J. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sens. Environ. 2003:87(1):85–98. https://doi.org/10.1016/S0034-4257(03)00174-3
[54] Zaitchik B. F., Evans J. P., Geerken R. A., Smith R. B. Climate and vegetation in the Middle East: Interannual variability and drought feedbacks. J. Climate 2007:20:3924–3941. https://doi.org/10.1175/JCLI4223.1
[55] Archer E. R. Beyond the “climate versus grazing” impasse: using remote sensing to investigate the effects of grazing system choice on v egetation cover in the eastern Karoo. J. Arid Environ. 2004:57(3):381–408. https://doi.org/10.1016/S0140-1963(03)00107-1
[56] Herrmann S. M., Anyamba A., Tucker C. J. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob. Environ. Change 2005:15(4):394–404. https://doi.org/10.1016/j.gloenvcha.2005.08.004
[57] Pinzon J. E., Tucker C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 2014:6(8):6929–6960. https://doi.org/10.3390/rs6086929
[58] Running S. W., Nemani R. R. Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates. Remote Sens. Environ. 1988:24(2):347–367. https://doi.org/10.1016/0034-4257(88)90034-X
[59] Cai H., Yang X., Wang K., Xiao L. Is forest restoration in the southwest China Karst promoted mainly by climate change or human-induced factors? Remote Sens. 2014:6(10):9895–9910. https://doi.org/10.3390/rs6109895
[60] Wang J., Meng J., Cai Y. Assessing vegetation dynamics impacted by climate change in the southwestern karst region of China with AVHRR NDVI and AVHRR NPP time -series. Environ. Geol. 2008:54:1185–1195. https://doi.org/10.1007/s00254-007-0901-9
[62] Quaye-Ballard J. A., Okrah T. M., Andam-Akorful S. A., Awotwi A., Osei-Wusu W., Antwi T., Tang X. Assessment of vegetation dynamics in Upper East Region of Ghana based on wavelet multi-resolution analysis. Model. Earth Syst. Environ. 2020:6:1783–1793. https://doi.org/10.1007/s40808-020-00789-8
[63] Zhang W., Wang L., Xiang F., Qin W., Jiang W. Vegetation dynamics and the relations with climate change at multiple time scales in the Yangtze River and Yellow River Basin, China. Ecol. Indic. 2020:110:105892. https://doi.org/10.1016/j.ecolind.2019.105892
[64] Jiang H., Xu X., Guan M., Wang L., Huang Y., Jiang Y. Determining the contributions of climate change and human activities to vegetation dynamics in agro-pastural transitional zone of northern China from 2000 to 2015. Sci. Total Environ. 2020:718:134871. https://doi.org/10.1016/j.scitotenv.2019.13487131839307
[65] Hameed M., Ahmadalipour A., Moradkhani H. Drought and food security in the middle east: An analytical framework. Agric. For. Meteorol. 2020:281:107816. https://doi.org/10.1016/j.agrformet.2019.107816
[66] Lelieveld J., Hadjinicolaou P., Kostopoulou E., Chenoweth J., El Maayar M., Giannakopoulos C., Hannides C., Lange M. A., Tanarhte M., Tyrlis E., Xoplaki E. Climate change and impacts in the Eastern Mediterranean and the Middle East. Clim. Change 2012:114:667–687. https://doi.org/10.1007/s10584-012-0418-4437277625834296
[67] Ahmadalipour A., Moradkhani H., Escalating heat-stress mortality risk due to global warming in the Middle East and North Africa (MENA). Environ. Int. 2018:117:215–225. https://doi.org/10.1016/j.envint.2018.05.01429763817
[68] Amiraslani F, Dragovich D. Combating desertification in Iran over the last 50 years: an overview of changing approaches. J. Environ. Manag. 2011:92(1):1–13. https://doi.org/10.1016/j.jenvman.2010.08.01220855149
[69] Hameed M., Moradkhani H., Ahmadalipour A., Moftakhari H., Abbaszadeh P., Alipour A. A review of the 21st century challenges in the food-energy-water security in the Middle East. Water 2019:11(4):682. https://doi.org/10.3390/w11040682
[70] Badreldin N., Goossens R. A satellite-based disturbance index algorithm for monitoring mitigation strategies effects on desertification change in an arid environment. Mitig. Adapt. Strateg. Glob. Change 2015:20:263–276. https://doi.org/10.1007/s11027-013-9490-y
[72] Budhwar P., Mellahi K. Introduction: human resource management in the Middle East. Int. J. Hum. Resour. Manag. 2007:18(1):2–10. https://doi.org/10.1080/09585190601068227
[73] Budhwar P., Mellahi K. HRM in the Middle East. In Handbook of Research on Comparative Human Resource Management, 2nd ed. Publisher: Edward Elgar Publishing, 2018.10.4337/9781784711139.00034
[74] Didan K., Munoz A. B., Solano R., Huete A. MODIS vegetation index user’s guide (MOD13 series) version 3.00 (Collection 6). University of Arizona: Vegetation Index and Phenology Lab 2015.
[75] Loveland T. R., Zhu Z., Ohlen D. O., Brown J. F., Reed B. C., Yang L. An analysis of the IGBP global land-cover characterization process. Photogramm. Eng. Remote Sensing 1999:65:1021–1032.
[76] Huffman G., Bolvin D., Braithwaite D., Hsu K., Joyce R., Xie P. GPM Integrated Multi-Satellite Retrievals for GPM (IMERG) Algorithm Theoretical Basis Document (ATBD) Version 4.4, NASA/GSFC, 2014:1–30. [Online]. [Accessed: 15.01.2022]. Available: http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.4.pdf
[77] Huffman G., Stocker E., Bolvin D., Nelkin E., Jackson T. GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V06, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), 2019.
[78] Rodell M., Houser P. R., Jambor U., Gottschalck J., Mitchell K., Meng C.-J., Arsenault K., Cosgrove B., Radakovich J., Bosilovich M., Entin J. K., Walker J. P., Lohmann D., Toll D. The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc. 2004:85(3):381–394. https://doi.org/10.1175/BAMS-85-3-381
[81] Dutta D., Kundu A., Patel N., Saha S., Siddiqui A. Assessment of agricultural drought in Rajasthan (India) using remote sensing derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI). Egypt. J. Remote. Sens. Space Sci 2015:18(1):53–63. https://doi.org/10.1016/j.ejrs.2015.03.006
[82] Gitelson A. A., Viña A., Arkebauer T. J., Rundquist D. C., Keydan G., Leavitt B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003:30:1248. https://doi.org/10.1029/2002GL016450
[83] Tarpley J., Schneider S., Money R. Global vegetation indices from the NOAA-7 meteorological satellite. J. Clim. Appl. Meteorol. 1984:23(3):491–494. https://doi.org/10.1175/1520-0450(1984)023<0491:GVIFTN>2.0.CO;210.1175/1520-0450(1984)023<0491:GVIFTN>2.0.CO;2
[84] Thenkabail P. S., Gamage M. The use of remote sensing data for drought assessment and monitoring in Southwest Asia. International Water Management Institute, 2004.
[85] Geerken R., Zaitchik B., Evans J. Classifying rangeland vegetation type and coverage from NDVI time series using Fourier Filtered Cycle Similarity. Int. J. Remote Sens. 2005:26(24):5535–5554. https://doi.org/10.1080/01431160500300297
[86] Martínez B., Gilabert M. Vegetation dynamics from NDVI time series analysis using the wavelet transform. Remote Sens. Environ. 2009:113(9):1823–1842. https://doi.org/10.1016/j.rse.2009.04.016
[88] Running S. W., Loveland T. R., Pierce L. L., Nemani R. R., Hunt Jr E. A remote sensing based vegetation classification logic for global land cover analysis. Remote Sens. Environ. 1995:51(1):39–48. https://doi.org/10.1016/0034-4257(94)00063-S
[89] Townshend J. R., Justice C. Analysis of the dynamics of African vegetation using the normalized difference vegetation index. Int. J. Remote Sens. 1986:7(11):1435–1445. https://doi.org/10.1080/01431168608948946
[90] Bhandari A., Kumar A., Singh G. Feature extraction using Normalized Difference Vegetation Index (NDVI): A case study of Jabalpur city. Proc. Technol. 2012:6:612–621. https://doi.org/10.1016/j.protcy.2012.10.074
[91] Cai D., Fraedrich K., Sielmann F., Guan Y., Guo S., Zhang L., Zhu X. Climate and vegetation: An ERA-interim and GIMMS NDVI analysis. J. Climate 2014:27(13):5111–5118. https://doi.org/10.1175/JCLI-D-13-00674.1
[92] Chuvieco E., Cocero D., Riano D., Martin P., Martınez-Vega J., de la Riva J., Pérez F. Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sens. Environ. 2004:92(3):322–331. https://doi.org/10.1016/j.rse.2004.01.019
[93] Gandhi G. M., Parthiban S., Thummalu N., Christy A. NDVI: Vegetation change detection using remote sensing and gis–A case study of Vellore District. Procedia Comput. Sci. 2015:57:1199–1210. https://doi.org/10.1016/j.procs.2015.07.415
[94] Goward S. N., Markham B., Dye D. G., Dulaney W., Yang J. Normalized difference vegetation index measurements from the Advanced Very High Resolution Radiometer. Remote Sens. Environ. 1991:35(2–3):257–277. https://doi.org/10.1016/0034-4257(91)90017-Z
[97] Wang R., Cherkauer K., Bowling L. Corn Response to Climate Stress Detected with Satellite-Based NDVI Time Series. Remote Sens. 2016:8(4):269. https://doi.org/10.3390/rs8040269
[98] Deng G., Zhang H., Guo X., Ying H. Assessment of Drought in Democratic People’s Republic of Korea in 2017 Using TRMM Data. In: Proceedings of 2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Xi’an. 2018. https://doi.org/10.1109/EORSA.2018.8598557
[99] Duan Z., Bastiaanssen W. First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling–calibration procedure. Remote Sens. Environ. 2013:131:1–13. https://doi.org/10.1016/j.rse.2012.12.002
[100] Mossad A., Alazba A. Determination and prediction of standardized precipitation index (SPI) using TRMM data in arid ecosystems. Arab. J. Geosci. 2018:11(132):1–16. https://doi.org/10.1007/s12517-018-3487-5
[102] Skofronick-Jackson G., Kirschbaum D., Petersen W., Huffman G., Kidd C., Stocker E., Kakar R. The Global Precipitation Measurement (GPM) mission’s scientific achievements and societal contributions: reviewing four years of advanced rain and snow observations. Q. J. R. Meteorol. Soc. 2018:144(S1):27–48. https://doi.org/10.1002/qj.3313658145831213729
[106] Stevens-Rumann C. S., Kemp K. B., Higuera P. E., Harvey B. J., Rother M. T., Donato D. C., Morgan P., Veblen T. T. Evidence for declining forest resilience to wildfires under climate change. Ecol. Lett. 2018:21(2):243–252. https://doi.org/10.1111/ele.12889
[107] Raja R., Nayak A., Panda B., Lal B., Tripathi R., Shahid M., Kumar A., Mohanty S., Samal P., Gautam P. Monitoring of meteorological drought and its impact on rice (Oryza sativa L.) productivity in Odisha using standardized precipitation index. Arch. Agron. Soil Sci. 2014:60(12):1701–1715. https://doi.org/10.1080/03650340.2014.912033
[108] Dahiru T. P-value, a true test of statistical significance? A cautionary note. Ann. Ib. Postgrad. Med. 2008:6:21–26. https://doi.org/10.4314/aipm.v6i1.64038
[111] Allan J. A. Fortunately there are substitutes for water otherwise our hydropolitical futures would be impossible. In: Proceedings of the conference on Priorities for Water Resources Allocation and Management; Overseas Development Administration (ODA), London, UK. 1993.
[112] Sofroniou A., Bishop S. Water Scarcity in Cyprus: A Review and Call for Integrated Policy. Water 2014:6(10):2898–2928. https://doi.org/10.3390/w6102898
[113] Li J., Chou J. Dynamical analysis on splitting of subtropical high-pressure zone. Chin. Sci. Bull. 1998:43:1285–1289. https://doi.org/10.1007/BF02884143
[114] Najafi M. S., Sarraf B., Zarrin A., Rasouli A. Climatology of atmospheric circulation patterns of Arabian dust in western Iran. Environ. Monit. Assess. 2017:189:473. https://doi.org/10.1007/s10661-017-6196-828849292
[115] Rousta I., Doostkamian M., Haghighi E., Mirzakhani B. Statistical-synoptic analysis of the atmosphere thickness pattern of Iran’s pervasive frosts. Climate 2016:4(3):41. https://doi.org/10.3390/cli4030041
[116] Rousta I., Karampour M., Doostkamian M., Olafsson H., Zhang H., Mushore T.D., Karimvandi A.S., Vargas E. R. M. Synoptic-dynamic analysis of extreme precipitation in Karoun River Basin, Iran. Arab. J. Geosci. 2020:13:1–16. https://doi.org/10.1007/s12517-020-5101-x
[117] Bolin B. On the influence of the earth’s orography on the general character of the westerlies. Tellus 1950:2(3):184–195. https://doi.org/10.3402/tellusa.v2i3.8547
[119] Rousta I., Nasserzadeh M.H., Jalali M., Haghighi E., Ólafsson H., Ashrafi S., Doostkamian M., Ghasemi A. Decadal spatial-temporal variations in the spatial pattern of anomalies of extreme precipitation thresholds (Case Study: Northwest Iran). Atmosphere 2017:8(8):135. https://doi.org/10.3390/atmos8080135
[120] Rousta I., Javadizadeh F., Dargahian F., Olafsson H., Shiri-Karimvandi A., Vahedinejad S.H., Doostkamian M., Monroy Vargas E. R., Asadolahi A. Investigation of vorticity during prevalent winter precipitation in Iran. Adv. Meteorol. 2018:ID6941501:1–13. https://doi.org/10.1155/2018/6941501
[121] Rousta I., Doostkamian M., Ólafsson H., Zhang H., Vahedinejad S. H., Sarif M. O., Monroy Vargas E. R. Analyzing the fluctuations of atmospheric precipitable water in Iran during various periods based on the retrieving technique of NCEP/NCAR. Open Atmospheric Sci. J. 2018:12:48–57. https://doi.org/10.2174/1874282301812010048
[122] Rousta I., Doostkamian M., Olafsson H., Ghafarian-Malamiri H., Zhang H., Taherian A., Sarif M., Gupta R., Monroy-Vargas E. On the relationship between the 500 hPa height fluctuations and the atmosphere thickness over Iran and the Middle East. Tethys 2019:16:3–14.
[123] Elbana T. A., Bakr N., Elbana M. Reuse of treated wastewater in Egypt: challenges and opportunities. In: Unconventional Water Resources and Agriculture in Egypt. The Handbook of Environmental Chemistry, Negm, A. (eds). Springer, Cham. 2017:75:429–453. https://doi.org/10.1007/698_2017_46
[125] Loutfy N. M. Reuse of Wastewater in Mediterranean Region, Egyptian Experience. In: Waste Water Treatment and Reuse in the Mediterranean Region, Barceló D., Petrovic M. (eds). Springer Berlin Heidelberg, 2011:183–213. https://doi.org/10.1007/698_2010_76
[127] Bilgen A. The Southeastern Anatolia Project (GAP) revisited: The evolution of GAP over forty years. New Perspect. Turk. 2018:58:125–154. https://doi.org/10.1017/npt.2018.8
[128] Özcan O., Bookhagen B., Musaoğlu N. Impact of the Atatürk dam lake on agro-meteorological aspects of the southeastern Anatolia region, Turkey. J. Indian Soc. Remote. Sens. 2018:46:471–481. https://doi.org/10.1007/s12524-017-0703-9
[129] Al-Madhhachi A.-S. T., Rahi K. A., Leabi W. K. Hydrological Impact of Ilisu Dam on Mosul Dam; the River Tigris. Geosciences 2020:10(4):120. https://doi.org/10.3390/geosciences10040120
[130] Kankal M., Nacar S., Uzlu E. Status of hydropower and water resources in the Southeastern Anatolia Project (GAP) of Turkey. Energy Rep. 2016:2:123–128. https://doi.org/10.1016/j.egyr.2016.05.003
[131] Frenken K. Legislative and institutional framework of water management. In: Irrigation in the middle east region in figures. AQUASTAT survey. FAO Water Reports 2008:34:55–56.
[132] Abdel-Satar A. M., Al-Khabbas M. H., Alahmad W. R., Yousef W. M., Alsomadi R. H., Iqbal T. Quality assessment of groundwater and agricultural soil in Hail region Saudi Arabia. Egypt. J. Aquat. Res. 2017:43(1):55–64. https://doi.org/10.1016/j.ejar.2016.12.004
[133] Fiaz S., Noor M. A., Aldosri F.O. Achieving food security in the Kingdom of Saudi Arabia through innovation: Potential role of agricultural extension. J. Saudi Soc. Agric. Sci. 2018:17(4):365–375. https://doi.org/10.1016/j.jssas.2016.09.001