[1] Reisinger A., Clark H. How much do direct livestock emissions actually contribute to global warming? Global Change Boil. 2018:24(4):1749–1761. https://doi.org/10.1111/gcb.1397529105912
[2] Salem Ali O. A. A., Verdini L., De Mastro G. Effect of different crop management systems on rainfed durum wheat greenhouse gas emissions and carbon footprint under Mediterranean conditions. J. Clean. Prod. 2016:140(2):608–621. https://doi.org/10.1016/j.jclepro.2016.04.135
[3] Intergovernmental Panel on Climate Change. Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014.10.1017/CBO9781107415324
[4] Gerber P. J., et al. Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO): Rome, 2013.
[6] Dono G., et al. An Integrated Assessment of the Impacts of Changing Climate Variability on Agricultural Productivity and Profitability in an Irrigated Mediterranean Catchment. Water Resour. Manag. 2013:27(10):3607–3622. https://doi.org/10.1007/s11269-013-0367-3
[8] Mittenzwei K., et al. Combined effects of climate change and policy uncertainty on the agricultural sector in Norway. Agric. Syst. 2017:153:118–126. https://doi.org/10.1016/j.agsy.2017.01.016
[10] Food and Agriculture Organization (FAO). FAOSTAT Statistical Database of the United Nation Food and Agriculture Organization Statistical Division. Rome [Online]. [Accessed 11.03.2022]. Available: http://faostat.fao.org/site/339/default.aspx
[11] European Commission. Communication from the Commission EUROPE 2020. A strategy for smart, sustainable and inclusive growth. Com (2010) 2020, Brussels, Commission of the European Communities, 2020.
[12] Haas R., et al. Efficiency and effectiveness of promotion systems for electricity generation from renewable energy sources – Lessons from EU countries. Energy 2011:36(4):2186–2193. https://doi.org/10.1016/j.energy.2010.06.028
[13] Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Union 2009:L140/16.
[16] Bacenetti J., et al. Mitigation strategies in the agro-food sector: The anaerobic digestion of tomato purée by-products. An Italian case study. Sci. Total Environ. 2015:526:88–97. https://doi.org/10.1016/j.scitotenv.2015.04.06925918896
[17] Bacenetti J., et al. Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable. Appl. Energy. 2016:179:669–686. https://doi.org/10.1016/j.apenergy.2016.07.029
[18] Lijó L., et al. Life Cycle Assessment of electricity production in Italy from anaerobic co-digestion of pig slurry and energy crops. Renew. Energy. 2014:68:625–635. https://doi.org/10.1016/j.renene.2014.03.005
[19] Venanzi S., et al. Use of agricultural by-products in the development of an agro-energy chain: A case study from the Umbria region. Sci. Total Environ. 2018:627:494–505. https://doi.org/10.1016/j.scitotenv.2018.01.17629426172
[20] Bacenetti J., et al. Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process. Sci. Total Environ. 2013:463–464:541–551. https://doi.org/10.1016/j.scitotenv.2013.06.05823831800
[21] Torquati B., et al. Environmental Sustainability and Economic Benefits of Dairy Farm Biogas Energy Production: A Case Study in Umbria. Sustainability 2014:6(10):6696–6713. https://doi.org/10.3390/su6106696
[23] Sauerbrei R., et al. Increased energy maize production reduces farmland bird diversity. GCB Bioenergy 2014:6(3):265–274. https://doi.org/10.1111/gcbb.12146
[24] Negri M., et al. Evaluation of methane production from maize silage by harvest of different plant portions. Biomass Bioenergy 2014:67:339–346. https://doi.org/10.1016/j.biombioe.2014.05.016
[25] Massé D. I., Talbot G., Gilbert Y. On farm biogas production: A method to reduce GHG emissions and develop more sustainable livestock operations. Anim Feed Sci Technol. 2011:166–167:436–445. https://doi.org/10.1016/j.anifeedsci.2011.04.075
[26] Lesteur M., et al. Alternative methods for determining anaerobic biodegradability: A review. Process Biochem. 2010:45(4):431–440. https://doi.org/10.1016/j.procbio.2009.11.018
[27] Alatriste-Mondragón F., et al. Anaerobic codigestion of municipal, farm, and industrial organic wastes: a survey of recent literature. Water Environ. Res. 2006:78(6):607–636. https://doi.org/10.2175/106143006X11167316894987
[28] Ashekuzzaman S. M., Poulsen T. G. Optimizing feed composition for improved methane yield during anaerobic digestion of cow manure based waste mixtures. Bioresour. Technol. 2011:102(3):2213–2218. https://doi.org/10.1016/j.biortech.2010.09.11820974531
[29] Ba B. H., Prins C., Prodhon C. Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective. Renew. Energy 2016:87:977–989. https://doi.org/10.1016/j.renene.2015.07.045
[30] Møller H. B., Sommer S. G., Ahring B. K. Methane productivity of manure, straw and solid fractions of manure. Biomass and Bioenergy 2004:26(5):485–495. https://doi.org/10.1016/j.biombioe.2003.08.008
[31] Wolf C., McLoone S., Bongards M. Biogas plant optimization using genetic algorithms and particle swarm optimization. Proceedings of the Signals and Systems Conference 2008:244:249.10.1049/cp:20080670
[32] Wei X, Kusiak A. Optimization of biogas production process in a wastewater treatment plant. Proceedings of the 2012 Industrial and Systems Engineering Research Conference 2012:1–9.
[33] Qdais H. A., et al. Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm. Resources, Resour Conserv Recy. 2010:54(6):359–363. https://doi.org/10.1016/j.resconrec.2009.08.012
[34] Wang X., et al. Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresour Technol. 2012:120:78–83. https://doi.org/10.1016/j.biortech.2012.06.05822784956
[35] García-Gen S., Rodríguez J., Lema J. M. Optimisation of substrate blends in anaerobic co-digestion using adaptive linear programming. Bioresour. Technol. 2014:173:159–167. https://doi.org/10.1016/j.biortech.2014.09.08925305644
[36] Alvarez J. A., Otero L., Lema J. M. A methodology for optimising feed composition for anaerobic co-digestion of agroindustrial wastes. Bioresour. Technol. 2010:101(4):1153–1158. https://doi.org/10.1016/j.biortech.2009.09.06119833510
[37] Dono G., et al. Income impacts of climate change: irrigated farming in the Mediterranean and expected changes in probability of favorable and adverse weather conditions. German J. Agric. Econ. 2014:63(3):177–186.
[38] Liu Y., Tao F. Probabilistic Change of Wheat Productivity and Water Use in China for Global Mean Temperature Changes of 1°, 2°, and 3° C. J Appl Meteorol Climatol. 2013:52(1):114–129. https://doi.org/10.1175/jamc-d-12-039.1
[39] Steidl J., et al. Expansion of an Existing Water Management Model for the Analysis of Opportunities and Impacts of Agricultural Irrigation under Climate Change Conditions. Water 2015:7(11):6351–6377. https://doi.org/10.3390/w7116351
[41] Dono G., et al. Winners and losers from climate change in agriculture: Insights from a case study in the Mediterranean basin. Agricultural Systems 2016:147:65–75. https://doi.org/10.1016/j.agsy.2016.05.013
[42] McCarl B. A., Spreen T. H. Applied mathematical programming using algebraic systems. 1997 [Online]. [Accessed 11.03.2022]. Available: https://agecon2.tamu.edu/people/faculty/mccarl-bruce/books.htm
[43] Calatrava J., Garrido A. Modelling water markets under uncertain water supply. Eur. Rev. Agric. Econ. 2005:32(2):119–142. https://doi.org/10.1093/eurrag/jbi006
[44] Cortignani R., Dono G. Agricultural policy and climate change: An integrated assessment of the impacts on an agricultural area of Southern Italy. Environ. Sci. Policy 2008:81:26–35. https://doi.org/10.1016/j.envsci.2017.12.003
[45] Dono G., et al. Winners and losers from climate change in agriculture: Insights from a case study in the Mediterranean basin. Agric. Syst. 2016:147:65–75. https://doi.org/10.1016/j.agsy.2016.05.013
[47] Schievano A., et al. Predicting anaerobic biogasification potential of ingestates and digestates of a full-scale biogas plant using chemical and biological parameters. Bioresour Technol. 2008:99(17):8112–8117. https://doi.org/10.1016/j.biortech.2008.03.03018440801
[48] Nasir I. M., Mohd Ghazi T. I., Omar R. Anaerobic digestion technology in livestock manure treatment for biogas production: A review. Eng. Life Sci. 2012:3:258–269. https://doi.org/10.1002/elsc.201100150
[50] Maragkaki A. E., et al. Pilot-scale anaerobic co-digestion of sewage sludge with agro-industrial by-products for increased biogas production of existing digesters at wastewater treatment plants. Waste Manag. 2017:59:362–370. https://doi.org/10.1016/j.wasman.2016.10.04327818072
[51] Pezzolla D., et al. Optimization of solid-state anaerobic digestion through the percolate recirculation. Biomass Bioenergy 2017:96:112–118. https://doi.org/10.1016/j.biombioe.2016.11.012
[52] Di Domenica N., et al. Scenario generation for stochastic programming and simulation: a modelling perspective. IMA J. Manag. Math. 2007:20(1):1–38. https://doi.org/10.1093/imaman/dpm027
[54] De Menna F., et al. Optimization of agricultural biogas supply chains using artichoke byproducts in existing plants. Agric. Syst. 2018:165:137–146. https://doi.org/10.1016/j.agsy.2018.06.008
[55] Pastare L., Romagnoli F. Life Cycle Cost Analysis of Biogas Production from Cerathophyllum demersum, Fucus vesiculosus and Ulva intestinalis in Latvian Conditions. Environ. Clim. Technol. 2019:23(2):258–271. https://doi.org/10.2478/rtuect-2019-0067
[56] Dzene I., Bodescu F. Evaluation of Biomass Availability for Biogas Production at Regional Level. Environ. Clim. Technol. 2010:3(3):54–62. https://doi.org/10.2478/v10145-009-0007-6
[57] Schievano A., D’Imporzano G., Adani F. Substituting energy crops with organic wastes and agro-industrial residues for biogas production. J. Environ. Manage. 2009:90(8):2537–2541. https://doi.org/10.1016/j.jenvman.2009.01.01319254824
[58] Auburger S., et al. Economic optimization of feedstock mix for energy production with biogas technology in Germany with a special focus on sugar beets – Effects on greenhouse gas emissions and energy balances. Renew. Energy. 2016:89:1–11. https://doi.org/10.1016/j.renene.2015.11.042