Have a personal or library account? Click to login
PCM Modified Gypsum Hempcrete with Increased Heat Capacity for Nearly Zero Energy Buildings Cover

PCM Modified Gypsum Hempcrete with Increased Heat Capacity for Nearly Zero Energy Buildings

By: Girts Bumanis and  Diana Bajare  
Open Access
|Jul 2022

References

  1. [1] Pacheco-Torgal F. Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020. Constr. Build. Mater. 2014:51:151–162. https://doi.org/10.1016/j.conbuildmat.2013.10.058
  2. [2] Sinka M., Korjakins A., Bajare D., Zimele Z., Sahmenko G. Bio-based construction panels for low carbon development. Energy Procedia 2018:147:220–226. https://doi.org/10.1016/j.egypro.2018.07.063
  3. [3] Le A. T., Gacoin A., Li A., Mai T. H., El Wakil N. Influence of various starch/hemp mixtures on mechanical and acoustical behavior of starch-hemp composite materials. Compos. Part B Eng. 2015:75:201–211. https://doi.org/10.1016/j.compositesb.2015.01.038
  4. [4] Bumanis G., Vitola L., Pundiene I., Sinka M., Bajare D. Gypsum, geopolymers, and starch-alternative binders for bio-based building materials: A review and life-cycle assessment. Sustain. 2020:12(14):5666. https://doi.org/10.3390/su12145666
  5. [5] Nováková P. Use of technical hemp in the construction industry. MATEC Web of Conferences 2018:146. https://doi.org/10.1051/matecconf/201814603011
  6. [6] Maalouf C., Moussa T., Umurigirwa B. S., Mai T. H. Hygrothermal behavior of a hemp-starch composite for roof applications. Proceedings of 14th International Conference of IBPSA – Building Simulation 2015:618–625.10.26868/25222708.2015.2145
  7. [7] Bardage S. L. Performance of buildings. Performance of Bio-based Building Materials 2017:335–383. https://doi.org/10.1016/B978-0-08-100982-6.00006-9
  8. [8] Tyagi V. V., Kaushik S. C., Tyagi S. K., Akiyama T. Development of phase change materials based microencapsulated technology for buildings: A review. Renewable and Sustainable Energy Reviews 2011:15(2):1373–1391. https://doi.org/10.1016/j.rser.2010.10.006
  9. [9] Cabeza L. F., Castellón C., Nogués M., Medrano M., Leppers R., Zubillaga O. Use of microencapsulated PCM in concrete walls for energy savings. Energy Build. 2007:39(2):113–119. https://doi.org/10.1016/j.enbuild.2006.03.030
  10. [10] Schossig P., Henning H. M., Gschwander S., Haussmann T. Micro-encapsulated phase-change materials integrated into construction materials. Solar Energy Materials and Solar Cells 2005:89(2–3):297–306. https://doi.org/10.1016/j.solmat.2005.01.017
  11. [11] Socaciu L., Pleşa A., Giurgiu O. Review on phase change materials for building applications. 2014. [Online]. [Accessed 14 March 2022]. Available: https://www.semanticscholar.org/paper/Review-on-phase-change-materials-for-building-Socaciu-Ple%C5%9Fa/3c17380902ea0187215f4bf18230a13459215592
  12. [12] Koschenz M., Lehmann B. Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings. Energy Build. 2004:36(6):567–578. https://doi.org/10.1016/j.enbuild.2004.01.029
  13. [13] Arce Maldonado P. Application of passive thermal energy storage in buildings using PCM and awnings. Chem. Eng. Sci. 2011:60(6):1535–1553.
  14. [14] Zhou D., Zhao C. Y., Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Applied Energy 2012:92:593–605. https://doi.org/10.1016/j.apenergy.2011.08.025
  15. [15] Kirilovs E., Zotova I., Gendelis S., Jörg-Gusovius H., Kukle S., Stramkale V. Experimental study of using micro-encapsulated phase-change material integrated into hemp shive wallboard. Buildings 2020:10(12):228. https://doi.org/10.3390/buildings10120228
  16. [16] Stevulova N., Kidalova L., Cigasova J., Junak J., Sicakova A., Terpakova E. Lightweight composites containing hemp hurds. Procedia Engineering 2013:65:69–74. https://doi.org/10.1016/j.proeng.2013.09.013
  17. [17] Shukla N., Kosny J. DHFMA Method for Dynamic Thermal Property Measurement of PCM-integrated Building Materials. Curr. Sustain. Renewable Energy Reports 2015:2(2):41–46. https://doi.org/10.1007/s40518-015-0025-x
  18. [18] Abdellatef Y., Khan M. A., Khan A., Alam M. I., Kavgic M. Mechanical, Thermal, and Moisture Buffering Properties of Novel Insulating Hemp-Lime Composite Building Materials. Materials 2020:13(21):5000. https://doi.org/10.3390/ma13215000766418833171950
  19. [19] Nováková P. Use of technical hemp in the construction industry. MATEC Web of Conferences 2018:146. https://doi.org/10.1051/matecconf/201814603011
  20. [20] Brzyski P., Gładecki M., Rumińska M., Pietrak K., Kubiś M., Łapka P. Influence of hemp shives size on hygro-thermal and mechanical properties of a hemp-lime composite. Materials (Basel). 2020:13(23):1–17. https://doi.org/10.3390/ma13235383773085833260830
  21. [21] Manzello S. L., Park S.-H., Bentz D. P., Mizukami T. Measurement of Thermal Properties of Gypsum Board at Elevated Temperatures. Proceedings of the 5th International Conference on Structures in Fire 2004:656–665. Nanyang Technological University, Singapore. 2008.
  22. [22] Brewer P. G., Peltzer E. T. The Molecular Basis for the Heat Capacity and Thermal Expansion of Natural Waters. Geophys. Res. Lett. 2019:46(22):13227–13233. https://doi.org/10.1029/2019GL085117
DOI: https://doi.org/10.2478/rtuect-2022-0040 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 524 - 534
Published on: Jul 28, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Girts Bumanis, Diana Bajare, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.