[1] Duque-Acevedo M., Belmonte-Ureña L. J., Cortés-García F. J., Camacho-Ferre F. Agricultural waste: Review of the evolution, approaches, and perspectives on alternative uses. Global Ecology and Conservation 2020:22:e00902. https://doi.org/10.1016/j.gecco.2020.e00902
[2] Yu X., Zhou H., Ye X., Wang H. From hazardous agriculture waste to hazardous metal scavenger: Tobacco stalk biochar-mediated sequestration of Cd leads to enhanced tobacco productivity. Journal of Hazardous Materials 2021:413:125303. https://doi.org/10.1016/j.jhazmat.2021.12530333582463
[3] Malik A., et al. Biostimulant-treated seedlings under sustainable agriculture: A global perspective facing climate change. Agronomy 2021:11. https://doi.org/10.3390/agronomy11010014
[4] Tusher T. R., Pondit T., Hasan M., Latif M. B., Binyamin Md. Impacts of Resource Consumption and Waste Generation on Environment and Subsequent Effects on Human Health: A Study Based on Ecological Footprint Analysis. Springer, 2020. https://doi.org/10.1007/978-981-15-1205-6_11
[5] Puglia D., Pezzolla D., Gigliotti G., Torre L., Bartucca M. L., del Buono D. The opportunity of valorizing agricultural waste, through its conversion into biostimulants, biofertilizers, and biopolymers. Sustainability (Switzerland) 2021:13(5):2710. https://doi.org/10.3390/su13052710
[6] Asim N., Emdadi Z., Mohammad M., Yarmo M. A., Sopian K. Agricultural solid wastes for green desiccant applications: An overview of research achievements, opportunities, and perspectives. Journal of Cleaner Production 2015:91:26–35. https://doi.org/10.1016/j.jclepro.2014.12.015
[7] Elbasiouny H., et al. Agricultural Waste Management for Climate Change Mitigation: Some Implications to Egypt. Springer Water, 2020. https://doi.org/10.1007/978-3-030-18350-9_8
[8] Colwill J. A., Wright E. I., Rahimifard S., Clegg A. J. Bio-plastics in the context of competing demands on agricultural land in 2050. International Journal of Sustainable Engineering 2012:5:3–16. https://doi.org/10.1080/19397038.2011.602439
[11] Talan A., Pokhrel S., Tyagi R. D., Drogui P. Biorefinery strategies for microbial bioplastics production: Sustainable pathway towards Circular Bioeconomy. Bioresource Technology Reports 2022:17:100875. https://doi.org/10.1016/j.biteb.2021.100875
[13] Scarlat N., Dallemand J. F., Monforti-Ferrario F., Nita V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environmental Development 2015:15:3–34. https://doi.org/10.1016/j.envdev.2015.03.006
[14] Yadav B., Pandey A., Kumar L. R., Tyagi R. D. Bioconversion of waste (water)/residues to bioplastics. A circular bioeconomy approach. Bioresource Technology 2020:298:122584. https://doi.org/10.1016/j.biortech.2019.12258431862396
[17] Kotykova O., Babych M. Economic impact of food loss and waste. Agris On-Line Papers in Economics and Informatics 2019:11(3):55–71. https://doi.org/10.7160/aol.2019.110306
[18] Bhuvaneshwari S., Hettiarachchi H., Meegoda J. N. Crop residue burning in India: Policy challenges and potential solutions. International Journal of Environmental Research and Public Health 2019:16(5):832. https://doi.org/10.3390/ijerph16050832642712430866483
[19] Scarlat N., Martinov M., Dallemand J. F. Assessment of the availability of agricultural crop residues in the European Union: Potential and limitations for bioenergy use. Waste Management 2010:30(10):1889–1897. https://doi.org/10.1016/j.wasman.2010.04.01620494567
[20] Sabiiti E. Utilizing agricultural waste to enhance food security and conserve the environment. African Journal of Food, Agriculture, Nutrition and Development 2011:11(6):1–9.
[21] Bellarby J., Tirado R., Leip A., Weiss F., Lesschen J. P., Smith P. Livestock greenhouse gas emissions and mitigation potential in Europe. Global Change Biology 2012:19:3–18. https://doi.org/10.1111/j.1365-2486.2012.02786.x23504717
[22] Benyam A (Addis), Soma T, Fraser E. Digital agricultural technologies for food loss and waste prevention and reduction: Global trends, adoption opportunities and barriers. Journal of Cleaner Production 2021:323:129099. https://doi.org/10.1016/j.jclepro.2021.129099
[23] Roszkowska S., Szubska-Włodarczyk N. What are the barriers to agricultural biomass market development? The case of Poland. Environment Systems and Decisions 2022:42:75–84. https://doi.org/10.1007/s10669-021-09831-1
[24] Pelkmans L. Long-term strategies for sustainable biomass imports in European bioenergy markets. Biofuels, Bioproducts and Biorefining 2018:13. https://doi.org/10.1002/bbb.1857
[25] Mohan S. V., Katakojwala R. The circular chemistry conceptual framework: A way forward to sustainability in industry 4.0. Current Opinion in Green and Sustainable Chemistry 2021:28:100434. https://doi.org/10.1016/j.cogsc.2020.100434
[26] Belaud J. P., Prioux N., Vialle C., Sablayrolles C. Big data for agri-food 4.0: Application to sustainability management for by-products supply chain. Computers in Industry 2019:111:41–50. https://doi.org/10.1016/j.compind.2019.06.006
[27] Barros M. V., Salvador R., de Francisco A. C., Piekarski C. M. Mapping of research lines on circular economy practices in agriculture: From waste to energy. Renewable and Sustainable Energy Reviews 2020:131:109958. https://doi.org/10.1016/j.rser.2020.109958
[28] Camana D., Manzardo A., Toniolo S., Gallo F., Scipioni A. Assessing environmental sustainability of local waste management policies in Italy from a circular economy perspective. An overview of existing tools. Sustainable Production and Consumption 2021:27:613–629. https://doi.org/10.1016/j.spc.2021.01.029
[29] Amran M. A., et al. Value-added metabolites from agricultural waste and application of green extraction techniques. Sustainability 2021:13(20):11432. https://doi.org/10.3390/su132011432
[32] Dietrich K., Dumont M. J., del Rio L. F., Orsat V. Producing PHAs in the bioeconomy — Towards a sustainable bioplastic. Sustainable Production and Consumption 2017:9:58–70. https://doi.org/10.1016/j.spc.2016.09.001
[34] Chiellini E., Cinelli P., Imam S. H., Mao L. Composite films based on biorelated agro-industrial waste and poly(vinyl alcohol). Preparation and mechanical properties characterization. Biomacromolecules 2001:2:1029–1037. https://doi.org/10.1021/bm010084j11710006
[35] Nandakumar A., Chuah J. A., Sudesh K. Bioplastics: A boon or bane? Renewable and Sustainable Energy Reviews 2021:147:111237. https://doi.org/10.1016/j.rser.2021.111237
[36] Wagh Y. R., Pushpadass H. A., Emerald F. M. E., Nath B. S. Preparation and characterization of milk protein films and their application for packaging of Cheddar cheese. Journal of Food Science and Technology 2014:51:3767–3775. https://doi.org/10.1007/s13197-012-0916-4425241725477643
[37] Gadhave R v., Das A., Mahanwar P. A., Gadekar P. T. Starch Based Bio-Plastics: The Future of Sustainable Packaging. Open Journal of Polymer Chemistry 2018:8(2). https://doi.org/10.4236/ojpchem.2018.82003
[38] Moohan J., et al. Cellulose nanofibers, and other biopolymers for biomedical applications. A review. Applied Sciences (Switzerland) 2020:10(1):65. https://doi.org/10.3390/app10010065.
[39] Baas J., Schotten M., Plume A., Côté G., Karimi R. Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quantitative Science Studies 2020:1(1):377–386. https://doi.org/10.1162/qss_a_00019
[40] Bornmann L., Haunschild R., Hug S. E. Visualizing the context of citations referencing papers published by Eugene Garfield: a new type of keyword co-occurrence analysis. Scientometrics 2018:114:427–437. https://doi.org/10.1007/s11192-017-2591-8580748029449748