Have a personal or library account? Click to login

Agro Biopolymer: A Sustainable Future of Agriculture – State of Art Review

Open Access
|Jul 2022

References

  1. [1] Duque-Acevedo M., Belmonte-Ureña L. J., Cortés-García F. J., Camacho-Ferre F. Agricultural waste: Review of the evolution, approaches, and perspectives on alternative uses. Global Ecology and Conservation 2020:22:e00902. https://doi.org/10.1016/j.gecco.2020.e00902
  2. [2] Yu X., Zhou H., Ye X., Wang H. From hazardous agriculture waste to hazardous metal scavenger: Tobacco stalk biochar-mediated sequestration of Cd leads to enhanced tobacco productivity. Journal of Hazardous Materials 2021:413:125303. https://doi.org/10.1016/j.jhazmat.2021.12530333582463
  3. [3] Malik A., et al. Biostimulant-treated seedlings under sustainable agriculture: A global perspective facing climate change. Agronomy 2021:11. https://doi.org/10.3390/agronomy11010014
  4. [4] Tusher T. R., Pondit T., Hasan M., Latif M. B., Binyamin Md. Impacts of Resource Consumption and Waste Generation on Environment and Subsequent Effects on Human Health: A Study Based on Ecological Footprint Analysis. Springer, 2020. https://doi.org/10.1007/978-981-15-1205-6_11
  5. [5] Puglia D., Pezzolla D., Gigliotti G., Torre L., Bartucca M. L., del Buono D. The opportunity of valorizing agricultural waste, through its conversion into biostimulants, biofertilizers, and biopolymers. Sustainability (Switzerland) 2021:13(5):2710. https://doi.org/10.3390/su13052710
  6. [6] Asim N., Emdadi Z., Mohammad M., Yarmo M. A., Sopian K. Agricultural solid wastes for green desiccant applications: An overview of research achievements, opportunities, and perspectives. Journal of Cleaner Production 2015:91:26–35. https://doi.org/10.1016/j.jclepro.2014.12.015
  7. [7] Elbasiouny H., et al. Agricultural Waste Management for Climate Change Mitigation: Some Implications to Egypt. Springer Water, 2020. https://doi.org/10.1007/978-3-030-18350-9_8
  8. [8] Colwill J. A., Wright E. I., Rahimifard S., Clegg A. J. Bio-plastics in the context of competing demands on agricultural land in 2050. International Journal of Sustainable Engineering 2012:5:3–16. https://doi.org/10.1080/19397038.2011.602439
  9. [9] Ford H. V., et al. The fundamental links between climate change and marine plastic pollution. Science of the Total Environment 2022:806(1):150392. https://doi.org/10.1016/j.scitotenv.2021.15039234583073
  10. [10] Zheng J., Suh S. Strategies to reduce the global carbon footprint of plastics. Nature Climate Change 2019:9:374–378. https://doi.org/10.1038/s41558-019-0459-z
  11. [11] Talan A., Pokhrel S., Tyagi R. D., Drogui P. Biorefinery strategies for microbial bioplastics production: Sustainable pathway towards Circular Bioeconomy. Bioresource Technology Reports 2022:17:100875. https://doi.org/10.1016/j.biteb.2021.100875
  12. [12] Koul B., Yakoob M., Shah M. P. Agricultural waste management strategies for environmental sustainability. Environmental Research 2022:206:112285. https://doi.org/10.1016/j.envres.2021.11228534710442
  13. [13] Scarlat N., Dallemand J. F., Monforti-Ferrario F., Nita V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environmental Development 2015:15:3–34. https://doi.org/10.1016/j.envdev.2015.03.006
  14. [14] Yadav B., Pandey A., Kumar L. R., Tyagi R. D. Bioconversion of waste (water)/residues to bioplastics. A circular bioeconomy approach. Bioresource Technology 2020:298:122584. https://doi.org/10.1016/j.biortech.2019.12258431862396
  15. [15] Ngoune Liliane T., Shelton Charles M. Factors Affecting Yield of Crops. Agronomy - Climate Change and Food Security. 2020. https://doi.org/10.5772/intechopen.90672
  16. [16] Gupta J., Kumari M., Mishra A., Swati, Akram M., Thakur I. S. Agro-forestry waste management. A review. Chemosphere 2022:287(3):132321. https://doi.org/10.1016/j.chemosphere.2021.13232134563778
  17. [17] Kotykova O., Babych M. Economic impact of food loss and waste. Agris On-Line Papers in Economics and Informatics 2019:11(3):55–71. https://doi.org/10.7160/aol.2019.110306
  18. [18] Bhuvaneshwari S., Hettiarachchi H., Meegoda J. N. Crop residue burning in India: Policy challenges and potential solutions. International Journal of Environmental Research and Public Health 2019:16(5):832. https://doi.org/10.3390/ijerph16050832642712430866483
  19. [19] Scarlat N., Martinov M., Dallemand J. F. Assessment of the availability of agricultural crop residues in the European Union: Potential and limitations for bioenergy use. Waste Management 2010:30(10):1889–1897. https://doi.org/10.1016/j.wasman.2010.04.01620494567
  20. [20] Sabiiti E. Utilizing agricultural waste to enhance food security and conserve the environment. African Journal of Food, Agriculture, Nutrition and Development 2011:11(6):1–9.
  21. [21] Bellarby J., Tirado R., Leip A., Weiss F., Lesschen J. P., Smith P. Livestock greenhouse gas emissions and mitigation potential in Europe. Global Change Biology 2012:19:3–18. https://doi.org/10.1111/j.1365-2486.2012.02786.x23504717
  22. [22] Benyam A (Addis), Soma T, Fraser E. Digital agricultural technologies for food loss and waste prevention and reduction: Global trends, adoption opportunities and barriers. Journal of Cleaner Production 2021:323:129099. https://doi.org/10.1016/j.jclepro.2021.129099
  23. [23] Roszkowska S., Szubska-Włodarczyk N. What are the barriers to agricultural biomass market development? The case of Poland. Environment Systems and Decisions 2022:42:75–84. https://doi.org/10.1007/s10669-021-09831-1
  24. [24] Pelkmans L. Long-term strategies for sustainable biomass imports in European bioenergy markets. Biofuels, Bioproducts and Biorefining 2018:13. https://doi.org/10.1002/bbb.1857
  25. [25] Mohan S. V., Katakojwala R. The circular chemistry conceptual framework: A way forward to sustainability in industry 4.0. Current Opinion in Green and Sustainable Chemistry 2021:28:100434. https://doi.org/10.1016/j.cogsc.2020.100434
  26. [26] Belaud J. P., Prioux N., Vialle C., Sablayrolles C. Big data for agri-food 4.0: Application to sustainability management for by-products supply chain. Computers in Industry 2019:111:41–50. https://doi.org/10.1016/j.compind.2019.06.006
  27. [27] Barros M. V., Salvador R., de Francisco A. C., Piekarski C. M. Mapping of research lines on circular economy practices in agriculture: From waste to energy. Renewable and Sustainable Energy Reviews 2020:131:109958. https://doi.org/10.1016/j.rser.2020.109958
  28. [28] Camana D., Manzardo A., Toniolo S., Gallo F., Scipioni A. Assessing environmental sustainability of local waste management policies in Italy from a circular economy perspective. An overview of existing tools. Sustainable Production and Consumption 2021:27:613–629. https://doi.org/10.1016/j.spc.2021.01.029
  29. [29] Amran M. A., et al. Value-added metabolites from agricultural waste and application of green extraction techniques. Sustainability 2021:13(20):11432. https://doi.org/10.3390/su132011432
  30. [30] Cho E. J., Trinh L. T. P., Song Y., Lee Y. G., Bae H. J. Bioconversion of biomass waste into high value chemicals. Bioresource Technology 2020:298:122386. https://doi.org/10.1016/j.biortech.2019.12238631740245
  31. [31] Ubando A. T., Felix C. B., Chen W. H. Biorefineries in circular bioeconomy: A comprehensive review. Bioresource Technology 2020:299:122585. https://doi.org/10.1016/j.biortech.2019.12258531901305
  32. [32] Dietrich K., Dumont M. J., del Rio L. F., Orsat V. Producing PHAs in the bioeconomy — Towards a sustainable bioplastic. Sustainable Production and Consumption 2017:9:58–70. https://doi.org/10.1016/j.spc.2016.09.001
  33. [33] Bilo F., et al. A sustainable bioplastic obtained from rice straw. Journal of Cleaner Production 2018:200:357–368. https://doi.org/10.1016/j.jclepro.2018.07.252
  34. [34] Chiellini E., Cinelli P., Imam S. H., Mao L. Composite films based on biorelated agro-industrial waste and poly(vinyl alcohol). Preparation and mechanical properties characterization. Biomacromolecules 2001:2:1029–1037. https://doi.org/10.1021/bm010084j11710006
  35. [35] Nandakumar A., Chuah J. A., Sudesh K. Bioplastics: A boon or bane? Renewable and Sustainable Energy Reviews 2021:147:111237. https://doi.org/10.1016/j.rser.2021.111237
  36. [36] Wagh Y. R., Pushpadass H. A., Emerald F. M. E., Nath B. S. Preparation and characterization of milk protein films and their application for packaging of Cheddar cheese. Journal of Food Science and Technology 2014:51:3767–3775. https://doi.org/10.1007/s13197-012-0916-4425241725477643
  37. [37] Gadhave R v., Das A., Mahanwar P. A., Gadekar P. T. Starch Based Bio-Plastics: The Future of Sustainable Packaging. Open Journal of Polymer Chemistry 2018:8(2). https://doi.org/10.4236/ojpchem.2018.82003
  38. [38] Moohan J., et al. Cellulose nanofibers, and other biopolymers for biomedical applications. A review. Applied Sciences (Switzerland) 2020:10(1):65. https://doi.org/10.3390/app10010065.
  39. [39] Baas J., Schotten M., Plume A., Côté G., Karimi R. Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quantitative Science Studies 2020:1(1):377–386. https://doi.org/10.1162/qss_a_00019
  40. [40] Bornmann L., Haunschild R., Hug S. E. Visualizing the context of citations referencing papers published by Eugene Garfield: a new type of keyword co-occurrence analysis. Scientometrics 2018:114:427–437. https://doi.org/10.1007/s11192-017-2591-8580748029449748
  41. [41] van Eck N. J., Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010:84:523–538. https://doi.org/10.1007/s11192-009-0146-3288393220585380
  42. [42] Lackner M. Bioplastics – Biobased plastics as renewable and/or biodegradable alternatives to petroplastics. 2015.
DOI: https://doi.org/10.2478/rtuect-2022-0038 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 499 - 511
Published on: Jul 7, 2022
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Nidhiben Patel, Maksims Feofilovs, Dagnija Blumberga, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.