Have a personal or library account? Click to login

Mitigating Overvoltage in Power Grids with Photovoltaic Systems by Energy Storage

Open Access
|Jul 2022

References

  1. [1] European Commission. Stepping up Europe’s 2030 Climate Ambition – Investigating in a Climate-Neutral Future for the Benefit of our People. Brussels, 2020.
  2. [2] Katiraei F., Sun C., Enayati B. No Inverter Left Behind. IEEE Power & Energy Magazine, 2015.
  3. [3] Mateo C., Frias P., Cossent R., Sonvilla P., Barth B. Overcoming the barriers that hamper a large-scale integration of solar photovoltaic power generation in European distribution grids. Solar Energy 2017:153:574–583. https://doi.org/10.1016/j.solener.2017.06.008
  4. [4] Kato T., Imanaka M., Kurimoto M., Sugimoto S. Impact of Power Output Curtailment Control Photovoltaic Power Generation on Grid Frequency. IFAC-PapersOnLine 2020:53(2):12157–12162. https://doi.org/10.1016/j.ifacol.2020.12.987
  5. [5] Zeb K., Islam S. U., Khan I., Uddin W., Ishfaq M., Busarello T. D. C., Muyeen S., Ahmad I., Kim H. Faults and Fault Ride Through strategies for grid-connected photovoltaic system: A comprehensive review. Renewable and Sustainable Energy Reviews 2022:158:112125. https://doi.org/10.1016/j.rser.2022.112125
  6. [6] Al-Shetwi A. Q., Sujod M. Z., Blaabjerg F., Yang Y. Fault ride-through control of grid-connected photovoltaic power plants: A review. Solar Energy 2019:180:340–350. https://doi.org/10.1016/j.solener.2019.01.032
  7. [7] Luthander R., Lingfors D., Widén J. Large-scale integration of photovoltaic power in a distribution grid using power curtailment and energy storage. Solar Energy 2017:155:1319–1325. https://doi.org/10.1016/j.solener.2017.07.083
  8. [8] Alquthami T., Sreerama Kumar R., Al Shaikh A. Mitigation of voltage rise due to high solar PV penetration in Saudi distribution network. Electrical Engineering 2020:102:881–890. Springer-Verlag GmbH Germany. https://doi.org/10.1007/s00202-020-00920-z
  9. [9] Adetokun B. B. Application of large-scale gird-connected solar photovoltaic system for voltage stability improvement of weak national grids. Scientific Reports 2021:11:24526. https://doi.org/10.1038/s41598-021-04300-w872009134972819
  10. [10] Hu R., Wang W., Wu X., Chen Z., Jing L., Ma W., Zeng G. Coordinated active and reactive power control for distribution networks with high penetrations of photovoltaic systems. Solar Energy 2022:231:809–827. https://doi.org/10.1016/j.solener.2021.12.025
  11. [11] Zeh A., Müller M., Naumann M., Hesse H. C., Jossen A., Witzmann R. Fundamentals of Using Battery Energy Storage Systems to Provide Primary Control Reserves in Germany. Batteries 2016:2(3). https://doi.org/10.3390/batteries2030029
  12. [12] Ansari B., Simoes M. G. Distributed Energy Management of PV-Storage Systems for Voltage Rise Mitigation. Technology and Economics of Smart Grids and Sustainable Energy 2017:2:15. https://doi.org/10.1007/s40866-017-0033-6
  13. [13] Wong L. A., Shareef H., Mohamed A., Ibrahim A. A. Optimal Battery Sizing in Photovoltaic Based Distributed Generation Using Enhanced Opposition-Based Firefly Algorithm for Voltage Rise Mitigation. Scientific World Journal 2014, Article ID 752096. https://doi.org/10.1155/2014/752096409057025054184
  14. [14] Ai W. L., Shareef H., Ibrahim A. A., Mohamed A. Optimal Battery Placement in Photovoltaic Based Distributed Generation Using Binary Firefly Algorithm for Voltage Rise Mitigation. IEEE International Conference on Power and Energy, 2014.10.1109/PECON.2014.7062432
  15. [15] Alam M. J. E., Muttaqi K. M., Sutanto D. Community Energy Storage for Neutral Voltage Rise Mitigation in Four- Wire Multigrounded LV Feeders with Unbalanced Solar PV Allocation. IEEE Transactions on Smart Grid, November 2015. https://doi.org/10.1109/TSG.2015.2427872
  16. [16] Deakin M., McCulloch M. Voltage Regulation of Large Scale PV: A Comparative Case Study. IEEE Manchester PowerTech, Manchester, 2017. https://doi.org/10.1109/PTC.2017.7981021
  17. [17] Jiandong D., Xinxin W., Jing W., Hao H. Optimal allocation of reactive power compensation in distribution network with high permeability and distributed photovoltaic. 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2018. https://doi.org/10.1109/ICIEA.2018.8397886
  18. [18] Dorrmann L., Sann-Ferro K., Heininger P., Mähliß J. VDE. Oktober 2021. [Online]. [Accessed 21 February 2022]. Available: https://www.dke.de/resource/blob/933404/dd44d15918ce4d4aefc363a4ef1490e1/kompendium-li-iobatterien-2021-de-data.pdf
  19. [19] Ghosh S., Rahman S. Global Deployment of Solar Photovoltaics: Its Opportunities and Challenges. IEEE PES Innovative Smart Grid Technologies Conference Europe, 2016. https://doi.org/10.1109/ISGTEurope.2016.7856217
  20. [20] Reimuth A., Locherer V., Danner M., Mauser W. How do changes in climate and consumption loads affect residential PV coupled battery energy systems? Energy 2020:198:117339. https://doi.org/10.1016/j.energy.2020.117339
  21. [21] MathWorks. 24-hour Simulation of a Vehicle-to-Grid (V2G) System. [Online]. [Accessed 7 December 2021]. Available: https://de.mathworks.com/help/physmod/sps/ug/24-hour-simulation-of-a-vehicle-to-grid-v2gsystem.html
  22. [22] V. d. Elektrizitätswirtschaft, “Repräsentative VDEW-Lastprofile. (V.d. Electricity industry, “Representative VDEW load profiles). [Online]. [Accessed 30 December 2021]. Available: https://www.bdew.de/energie/standardlastprofilestrom/ (In German).
  23. [23] Statistik Austria. (Austrian statistics). [Online]. [Accessed: 17 March 2022]. Available: https://www.statistik.at/web_de/statistiken/energie_umwelt_innovation_mobilitaet/energie_und_umwelt/energie/energieeinsatz_der_haushalte/index.html (In German).
  24. [22] Prochazka P., Cervinka D., Martis J., Cipin R., Vorel P. Li-Ion Battery Deep Discharge Degradation. Transactions of the Electrochemical Society 2016:74(1).10.1149/07401.0031ecst
  25. [23] Hashemifarzad A., Faulstich M., zum Hingst J., Jokari M. Impact of electromobility on the future standard load profile. International Journal of Smart Grid and Clean Energy 2019.10.12720/sgce.8.2.164-173
  26. [24] Verma S., Bhargava A., Chaudhary V., Bhasin S. Simulation Study of an Isolated Microgrid Consisting Electric Vehicle Charging Station with Penetration of Multiple RESs. 2nd International Conference on Power Energy, Environmental and Intelligent Control, 2019.10.1109/PEEIC47157.2019.8976694
  27. [25] Mathworks Dokumentation Examples 250-kW Grid Connected PV Array. [Online]. [Accessed 25 May 2022]. Available: https://de.mathworks.com/help/physmod/sps/ug/250-kw-grid-connected-pv-array.html
  28. [25] Heuck K., Dettmann K.-D., Schulz D. Elektrische Energieversorgung. Erzeugung, Übertragung und Verteilung elektrischer Energie für Studium und Praxis. (Electrical energy supply. Generation, transmission and distribution of electrical energy for studies and practice). Hamburg: Springer, 2013. (In German).10.1007/978-3-8348-2174-4
  29. [26] MathWorks Documentation Three-Phase RLC Load. [Online]. [Accessed 24 May 2022]. Available: https://de.mathworks.com/help/physmod/sps/powersys/ref/threephaseparallelrlcload.html
  30. [27] Mathworks Documentation Distributed Parameters Line. [Online]. [Accessed 24 May 2022]. Available: https://de.mathworks.com/help/physmod/sps/powersys/ref/distributedparametersline.html
DOI: https://doi.org/10.2478/rtuect-2022-0036 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 470 - 483
Published on: Jul 7, 2022
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Sarah Landl, Harald Kirchsteiger, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.