[1] European Commission. Stepping up Europe’s 2030 Climate Ambition – Investigating in a Climate-Neutral Future for the Benefit of our People. Brussels, 2020.
[3] Mateo C., Frias P., Cossent R., Sonvilla P., Barth B. Overcoming the barriers that hamper a large-scale integration of solar photovoltaic power generation in European distribution grids. Solar Energy 2017:153:574–583. https://doi.org/10.1016/j.solener.2017.06.008
[4] Kato T., Imanaka M., Kurimoto M., Sugimoto S. Impact of Power Output Curtailment Control Photovoltaic Power Generation on Grid Frequency. IFAC-PapersOnLine 2020:53(2):12157–12162. https://doi.org/10.1016/j.ifacol.2020.12.987
[5] Zeb K., Islam S. U., Khan I., Uddin W., Ishfaq M., Busarello T. D. C., Muyeen S., Ahmad I., Kim H. Faults and Fault Ride Through strategies for grid-connected photovoltaic system: A comprehensive review. Renewable and Sustainable Energy Reviews 2022:158:112125. https://doi.org/10.1016/j.rser.2022.112125
[6] Al-Shetwi A. Q., Sujod M. Z., Blaabjerg F., Yang Y. Fault ride-through control of grid-connected photovoltaic power plants: A review. Solar Energy 2019:180:340–350. https://doi.org/10.1016/j.solener.2019.01.032
[7] Luthander R., Lingfors D., Widén J. Large-scale integration of photovoltaic power in a distribution grid using power curtailment and energy storage. Solar Energy 2017:155:1319–1325. https://doi.org/10.1016/j.solener.2017.07.083
[8] Alquthami T., Sreerama Kumar R., Al Shaikh A. Mitigation of voltage rise due to high solar PV penetration in Saudi distribution network. Electrical Engineering 2020:102:881–890. Springer-Verlag GmbH Germany. https://doi.org/10.1007/s00202-020-00920-z
[9] Adetokun B. B. Application of large-scale gird-connected solar photovoltaic system for voltage stability improvement of weak national grids. Scientific Reports 2021:11:24526. https://doi.org/10.1038/s41598-021-04300-w872009134972819
[10] Hu R., Wang W., Wu X., Chen Z., Jing L., Ma W., Zeng G. Coordinated active and reactive power control for distribution networks with high penetrations of photovoltaic systems. Solar Energy 2022:231:809–827. https://doi.org/10.1016/j.solener.2021.12.025
[11] Zeh A., Müller M., Naumann M., Hesse H. C., Jossen A., Witzmann R. Fundamentals of Using Battery Energy Storage Systems to Provide Primary Control Reserves in Germany. Batteries 2016:2(3). https://doi.org/10.3390/batteries2030029
[12] Ansari B., Simoes M. G. Distributed Energy Management of PV-Storage Systems for Voltage Rise Mitigation. Technology and Economics of Smart Grids and Sustainable Energy 2017:2:15. https://doi.org/10.1007/s40866-017-0033-6
[13] Wong L. A., Shareef H., Mohamed A., Ibrahim A. A. Optimal Battery Sizing in Photovoltaic Based Distributed Generation Using Enhanced Opposition-Based Firefly Algorithm for Voltage Rise Mitigation. Scientific World Journal 2014, Article ID 752096. https://doi.org/10.1155/2014/752096409057025054184
[14] Ai W. L., Shareef H., Ibrahim A. A., Mohamed A. Optimal Battery Placement in Photovoltaic Based Distributed Generation Using Binary Firefly Algorithm for Voltage Rise Mitigation. IEEE International Conference on Power and Energy, 2014.10.1109/PECON.2014.7062432
[15] Alam M. J. E., Muttaqi K. M., Sutanto D. Community Energy Storage for Neutral Voltage Rise Mitigation in Four- Wire Multigrounded LV Feeders with Unbalanced Solar PV Allocation. IEEE Transactions on Smart Grid, November 2015. https://doi.org/10.1109/TSG.2015.2427872
[16] Deakin M., McCulloch M. Voltage Regulation of Large Scale PV: A Comparative Case Study. IEEE Manchester PowerTech, Manchester, 2017. https://doi.org/10.1109/PTC.2017.7981021
[17] Jiandong D., Xinxin W., Jing W., Hao H. Optimal allocation of reactive power compensation in distribution network with high permeability and distributed photovoltaic. 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2018. https://doi.org/10.1109/ICIEA.2018.8397886
[18] Dorrmann L., Sann-Ferro K., Heininger P., Mähliß J. VDE. Oktober 2021. [Online]. [Accessed 21 February 2022]. Available: https://www.dke.de/resource/blob/933404/dd44d15918ce4d4aefc363a4ef1490e1/kompendium-li-iobatterien-2021-de-data.pdf
[19] Ghosh S., Rahman S. Global Deployment of Solar Photovoltaics: Its Opportunities and Challenges. IEEE PES Innovative Smart Grid Technologies Conference Europe, 2016. https://doi.org/10.1109/ISGTEurope.2016.7856217
[20] Reimuth A., Locherer V., Danner M., Mauser W. How do changes in climate and consumption loads affect residential PV coupled battery energy systems? Energy 2020:198:117339. https://doi.org/10.1016/j.energy.2020.117339
[23] Statistik Austria. (Austrian statistics). [Online]. [Accessed: 17 March 2022]. Available: https://www.statistik.at/web_de/statistiken/energie_umwelt_innovation_mobilitaet/energie_und_umwelt/energie/energieeinsatz_der_haushalte/index.html (In German).
[22] Prochazka P., Cervinka D., Martis J., Cipin R., Vorel P. Li-Ion Battery Deep Discharge Degradation. Transactions of the Electrochemical Society 2016:74(1).10.1149/07401.0031ecst
[23] Hashemifarzad A., Faulstich M., zum Hingst J., Jokari M. Impact of electromobility on the future standard load profile. International Journal of Smart Grid and Clean Energy 2019.10.12720/sgce.8.2.164-173
[24] Verma S., Bhargava A., Chaudhary V., Bhasin S. Simulation Study of an Isolated Microgrid Consisting Electric Vehicle Charging Station with Penetration of Multiple RESs. 2nd International Conference on Power Energy, Environmental and Intelligent Control, 2019.10.1109/PEEIC47157.2019.8976694
[25] Heuck K., Dettmann K.-D., Schulz D. Elektrische Energieversorgung. Erzeugung, Übertragung und Verteilung elektrischer Energie für Studium und Praxis. (Electrical energy supply. Generation, transmission and distribution of electrical energy for studies and practice). Hamburg: Springer, 2013. (In German).10.1007/978-3-8348-2174-4