[1] Departamento Nacional de Planeacion (DNP). Informe anual de Avance en la implementacion de los ODS en Colombia (Annual progress report on the implementation of the SDGs in Colombia.). Bogota: DNP, 2020. (in Spanish)
[2] Gobierno de Colombia. Actualizada Contribución Prevista Determinada a Nivel Nacional de la República de Colombia (Updated Predicted Nationally Determined Contribution of the Republic of Colombia.). Colombia: NBC, 2020. (in Spanish)
[3] Colombian Ministry of Environment and Development. Colombia está comprometida con la acción climática global (Colombia is committed to global climate action.). Bogota: Ministerio de Ambiente y Desarrollo Sostenible, 2021. (in Spanish)
[5] Mining and Energy Ministery of Colombia. Transición energética: un legado para el presente y el futuro de Colombia. 2020. [Online]. [Accessed: 3 January 2022]. Available: https://www.minenergia.gov.co/libro-transicionenergetica#:~:text=En 2021%2C llegaremos a cerca,renovables en la matriz eléctrica
[7] Unidad de Planeación Minero-Energética (UPME). Plan Indicativo de Expansión de Cobertura de Energía Eléctrica 2016-2020 (Indicative Plan for the Expansion of Electricity Coverage 2016-2020.). Bogota: UPME, 2016. (in Spanish)
[9] Meneses-Jácome A., et al. LCA applied to elucidate opportunities for biogas from wastewaters in Colombia. Water Sci. Technol. 2015:71(2):211–219. https://doi.org/10.2166/wst.2014.47725633944
[10] Guedes Cubas do Amaral K., Mansur Aisse M., Collere Posetti G. R. Sustainability assessment of sludge and biogas management in wastewater treatment plants using the LCA technique. Ambiente & Agua 2019:14(5):1–14. https://doi.org/10.4136/ambi-agua.2371
[11] Caicedo-Concha D. M., et al. The potential of methane production using aged landfill waste in developing countries: A case of study in Colombia. Cogent Eng. 2019:6(1):1–15. https://doi.org/10.1080/23311916.2019.1664862
[12] Contreras M. D., et al. A look to the biogas generation from organic wastes in Colombia. Int. J. Energy Econ. Policy 2020:10(5):248–254. https://doi.org/10.32479/ijeep.9639
[13] Meneses-Jácome A., et al. Sustainable Energy from agro-industrial wastewaters in Latin-America. Renew. Sustain. Energy Rev. 2016:56:1249–1262. https://doi.org/10.1016/j.rser.2015.12.036
[14] Guevara P. Red Iberoamericana de Aprovechamiento de Residuos Organicos en Produccion de Energia. Bioenergía: Fuentes, conversion y sustentabilidad (Iberoamerican Program for the Use of Organic Residues in Energy Production, Bioenergy: Sources, conversion and sustainability.). Bogota: Tescol, 2014. (in Spanish)
[15] Unidad de Planeación Minero Energética (UPME). Guia práctica para la aplicación de los incentivos tributarios de la Ley 1715 de 2014 (Practical guide for the application of the tax incentives of Law 1715 of 2014.). Bogota: UPME, 2014. (in Spanish)
[18] Velásquez M. E., Rincón J. M. Estimación del potencial de conversión a biogás de la biomasa en Colombia y su aprovechamiento (Estimation of the biomass conversion potential to biogas in Colombia and its use.). Bogota: UPME, 2018. (in Spanish)
[19] Camara de Comercio de Cali. El poder de la bioenergía en la competitividad el Valle del Cauca (The power of bioenergy in the competitiveness of Valle del Cauca.). Cali, 2018. (in Spanish)
[20] Ministerio de Minas y Energía (República de Colombia). Boletín estadístico de minas y energía 2016 – 2020 (Statistical bulletin of mines and energy 2016 – 2020.). Bogota: UPME, 2021. (in Spanish)
[22] Universidad Externado de Colombia. Relleno sanitario Doña Juana ¿una solución llena de problemas? (Doña Juana landfill, a solution full of problems?) Bogota: UEC, 2019. (in Spanish)
[24] UNFCC. Nuevo Mondoñedo Landfill Gas Recovery, Flaring and Energy Production and Transformation for Leachate Evaporation. Project 10297, 2017 [Online]. [Accessed: 09.11.2021]. Available: https://cdm.unfccc.int/Projects/DB/ICONTEC1462894251.71/view
[26] Yue L., Ruojue L., Jingzheng R. Chapter 11- Fuzzy multicriteria decision making on ranking the biofuels production pathways. In Bioffuels for a more sustainable future. Life Cycle Sustainability Assessment and Multi-Criteria Decision Making 2020:317–325. https://doi.org/10.1016/B978-0-12-815581-3.00011-7
[27] Sala S. Chapter3- Triple bottom line, sustainability and sustainability assessment, an overview. In Bioffuels for a more sustainable future. Life Cycle Sustainability Assessment and Multi-Criteria Decision Making 2020:47–72. https://doi.org/10.1016/B978-0-12-815581-3.00003-8
[29] Toniolo S., et al. Chapter 3- Life cycle thinking tools: Life cycle assessment, life cycle costing and social life cycle assessment. In Life Cycle Sust. Assess. Decision-Making 2020:39–45. https://doi.org/10.1016/B978-0-12-818355-7.00003-8
[30] Rebitzer G., et al. Life cycle assessment Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment International 2004:30(5):701–720. https://doi.org/10.1016/j.envint.2003.11.00515051246
[31] Buxel H., Esenduran G., Griffin S. Strategic sustainability: Creating business value with life cycle analysis. Bus. Horiz. 2015:58(1):109–122. https://doi.org/10.1016/j.bushor.2014.09.004
[32] Bartolozzi I., Rizzi F., Frey M. Are district heating systems and renewable energy sources always an environmental win-win solution? A life cycle assessment case study in Tuscany, Italy. Renewable and Sustainable Energy Reviews 2017:80:408–420. https://doi.org/10.1016/j.rser.2017.05.231
[33] Jolliet O., et al. IMPACT 2002+: A New Life Cycle Impact Assessment Methodology. International Journal of Life Cycle Assessment 2003:8:324. https://doi.org/10.1007/BF02978505
[34] International Organization for Standardization. ISO 14044:2006 Environ. Manag. Life cycle assessement – Requirements and Guidelines. Geneva: ISO, 2006.
[35] Ardolino F., Parrillo F., Arena U. Biowaste-to-biomethane or biowaste-to-energy? An LCA study on anaerobic digestion of organic waste. J. Clean. Prod. 2018:174:462–476. https://doi.org/10.1016/j.jclepro.2017.10.320
[36] Woon K. S., et al. Environmental assessment of food waste valorization in producing biogas for various types of energy use based on LCA approach. Waste Manag. 2016:50:290–299. https://doi.org/10.1016/j.wasman.2016.02.02226923298
[37] Kopsahelis A., et al. Life cycle assessment (LCA) of end-of-life dairy products (EoL-DPs) valorization via anaerobic co-digestion with agro-industrial wastes for biogas production. J. Chem. Technol. Biotechnol. 2019:94(11):3687–3697. https://doi.org/10.1002/jctb.6174
[39] Zhou H., et al. Decarbonizing university campuses through the production of biogas from food waste: An LCA analysis. Renew. Energy 2021:176:565–578. https://doi.org/10.1016/j.renene.2021.05.007
[41] Yliopisto J. Evaluation of Potential Technologies and Operational Scales Reflecting Market Needs for Low-cost Gas Upgrading Systems. UK: VALORGAS, 2013.
[42] Ryckebosch E., Drouillon M., Vervaeren H. Techniques for transformation of biogas to biomethane. Biomass and Bioenergy 2011:35(5):1633–1645. https://doi.org/10.1016/j.biombioe.2011.02.033
[46] Dragos D., Neamtu B. Sustainable Public Procurement: Life-Cycle Costing in the New EU Directive Proposal. Eur. Procure. Public Priv. Partnersh. Law Rev. 2013:8(1):19–30. https://doi.org/10.21552/epppl/2013/1/159
[47] Bejan A. Economies of Scale. Freedom and Evolution: Hierarchy in Nature, Society and Science. Cham: Springer International Publishing, 2020:13–20. https://doi.org/10.1007/978-3-030-34009-4
[50] Benoit-Norris C. The Methodological Sheets for Sub-Categories in Social Life Cycle Assessment (S-LCA). Pre Publ. Version. Methodol. Sheets Subcategories Soc. Life Cicle Assess (S-LCA), 2018:2.
[52] Ruiz Restrepo M. A. Bioenergía, una alternativa energética sustentable para Colombia. Aplicación del Concepto Integrado de Sostenibilidad (ICoS) (Bioenergy, a sustainable energy alternative for Colombia. Application of the Integrated Concept of Sustainability.). Bogota: Universidad Nacional de Colombia, 2019. (in Spanish)
[54] Wernet G., et al. The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 2016:21(9):1218–1230. https://doi.org/10.1007/s11367-016-1087-8
[56] Diaz F., Pakere I., Romagnoli F. Life cycle assessment of low temperature district heating system in Gulbene region. Environ. Clim. Technol. 2020:24(2):285–299. https://doi.org/10.2478/rtuect-2020-0073