[1] Parra C., Kirschke J., Ali S. H. Ensure Access to Affordable, Reliable, Sustainable and Modern Energy for All. Mining, Materials, and the Sustainable Development Goals 2020:14:61–68. CRC Press. https://doi.org/10.1201/9780367814960-7
[2] Bebbington J., Unerman J. Achieving the United Nations sustainable development goals. Accounting, Auditing & Accountability Journal 2018:31(1):2–24. https://doi.org/10.1108/AAAJ-05-2017-2929
[3] Yilmaz N., Morton B. Comparative characteristics of compression ignited engines operating on biodiesel produced from waste vegetable oil. Biomass and Bioenergy 2011:35(5):2194–2199. https://doi.org/10.1016/j.biombioe.2011.02.032
[4] McCarthy P., Rasul M. G., Moazzem S. Comparison of the performance and emissions of different biodiesel blends against petroleum diesel. International Journal of Low-Carbon Technologies 2011:6(4):255–260. https://doi.org/10.1093/ijlct/ctr012
[5] Özener O., Yüksek L., Ergenç A. T., Özkan M. Effects of soybean biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel 2014:115:875–883. https://doi.org/10.1016/j.fuel.2012.10.081
[6] Valente O. S., Da Silva M. J., Pasa V. M., Belchior C. R., Sodre J. R. Fuel consumption and emissions from a diesel power generator fuelled with castor oil and soybean biodiesel. Fuel 2010:89(12):3637–3642. https://doi.org/10.1016/j.fuel.2010.07.041
[7] Lapuerta M., Armas O., Ballesteros R., Fernández J. Diesel emissions from biofuels derived from Spanish potential vegetable oils. Fuel 2005:84(6):773–780. https://doi.org/10.1016/j.fuel.2004.11.010
[8] Altun Ş., Lapuerta M. Properties and emission indicators of biodiesel fuels obtained from waste oils from the Turkish industry. Fuel 2014:128:288–295. https://doi.org/10.1016/j.fuel.2014.03.024
[11] Tüccar G., Tosun E., Özgür T., Aydın K. Diesel engine emissions and performance from blends of citrus sinensis biodiesel and diesel fuel. Fuel 2014:132:7–11. https://doi.org/10.1016/j.fuel.2014.04.065
[12] Tashtoush G. M., Al-Widyan M. I., Albatayneh A. M. Factorial analysis of diesel engine performance using different types of biofuels. Journal of environmental management 2007:84(4):401–411. https://doi.org/10.1016/j.jenvman.2006.06.01716934388
[13] Esteban B., Baquero G., Puig R., Riba J. R., Rius A. Is it environmentally advantageous to use vegetable oil directly as biofuel instead of converting it to biodiesel? Biomass and Bioenergy 2011:35(3):1317–1328. https://doi.org/10.1016/j.biombioe.2010.12.025
[14] Albatayneh A., Al-Khasawneh Y., Alawneh F., Alkhazali A., Mohaidat S. Biofuel in Developing Countries – Ethical Concerns. In Advanced Studies in Energy Efficiency and Built Environment for Developing Countries 2019:149–154. Springer, Cham. https://doi.org/10.1007/978-3-030-10856-4_13
[16] Chhetri A. B., Watts K. C., Islam M. R. Waste cooking oil as an alternate feedstock for biodiesel production. Energies 2008:1(1):3–18. https://doi.org/10.3390/en1010003
[19] Kalam M. A., Masjuki H. H., Jayed M. H., Liaquat A. M. Emission and performance characteristics of an indirect ignition diesel engine fuelled with waste cooking oil. Energy 2011:36(1):397–402. https://doi.org/10.1016/j.energy.2010.10.026
[20] Abuhabaya A., Fieldhouse J. D., Brown D. R. Evaluation of properties and use of waste vegetable oil (WVO), pure vegetable oils and standard diesel as used in a compression ignition engine. Future Technologies in Computing and Engineering Annual Researchers’ Conference (CEARC’10). The University of Huddersfield. 2010.
[21] Esteban B., Baquero G, Puig R, Riba JR, Rius A. Is it environmentally advantageous to use vegetable oil directly as biofuel instead of converting it to biodiesel? Biomass and Bioenergy 2011:35(3):1317–1328. https://doi.org/10.1016/j.biombioe.2010.12.025
[22] Ortner M. E., Müller W., Schneider I., Bockreis A. Environmental assessment of three different utilisation paths of waste cooking oil from households. Resources, Conservation and Recycling 2016:106:59–67. https://doi.org/10.1016/j.resconrec.2015.11.007
[23] Coriakula J., Moodie M., Waqa G., Latu C., Snowdon W., Bell C. The development and implementation of a new import duty on palm oil to reduce non-communicable disease in Fiji. Globalization and Health 2018:14(1):91. https://doi.org/10.1186/s12992-018-0407-0611637430157872
[24] Home E., Home R., Interface F. C., Biofuels A., Biorefineries I., Consortia B., Basics B., Basics B., Basics B., Basics B., Challenge B. I. 2019 Peer Review Report.
[25] da Silva César A., Werderits D. E., de Oliveira Saraiva G. L., da Silva Guabiroba R. C. The potential of waste cooking oil as supply for the Brazilian biodiesel chain. Renewable and Sustainable Energy Reviews 2017:72:246–253. https://doi.org/10.1016/j.rser.2016.11.240
[26] Cho S., Kim J., Park H. C., Heo E. Incentives for waste cooking oil collection in South Korea: a contingent valuation approach. Resources, Conservation and Recycling 2015:99:63–71. https://doi.org/10.1016/j.resconrec.2015.04.003
[27] Hussain M. N., Al Samad T., Janajreh I. Economic feasibility of biodiesel production from waste cooking oil in the UAE. Sustainable cities and Society 2016:26:217–226. https://doi.org/10.1016/j.scs.2016.06.010
[28] Samad A. T., Perdani M. S., Putri D. N., Hermansyah H. Techno-economic analysis of portable plant from waste cooking oil. Energy Procedia 2018:153:269–273. https://doi.org/10.1016/j.egypro.2018.10.061
[29] Liu T., Liu Y., Wu S., Xue J., Wu Y., Li Y., Kang X. Restaurants’ behaviour, awareness, and willingness to submit waste cooking oil for biofuel production in Beijing. Journal of Cleaner Production 2018:204:636–642. https://doi.org/10.1016/j.jclepro.2018.09.056
[30] Sheinbaum-Pardo C., Calderón-Irazoque A., Ramírez-Suárez M. Potential of biodiesel from waste cooking oil in Mexico. Biomass and Bioenergy 2013:56:230–238. https://doi.org/10.1016/j.biombioe.2013.05.008
[31] Zhang X., Li L., Wu Z., Hu Z., Zhou Y. Material Compatibilities of Biodiesels with Elastomers, Metals and Plastics in a Diesel Engine. SAE International 2009. https://doi.org/10.4271/2009-01-2799
[32] Wang Z., Li L., Wang J., Reitz R. D. Effect of biodiesel saturation on soot formation in diesel engines. Fuel 2016:175:240–248. https://doi.org/10.1016/j.fuel.2016.02.048
[34] Albatayneh A., Assaf M. N., Alterman D., Jaradat M. Comparison of the overall energy efficiency for internal combustion engine vehicles and electric vehicles. Environmental and Climate Technologies 2020:24(1):669–680. https://doi.org/10.2478/rtuect-2020-0041
[36] Allah F. U., Alexandru G. Waste cooking oil as source for renewable fuel in Romania. In IOP Conference Series: Materials Science and Engineering 2016:147(1):012133. https://doi.org/10.1088/1757-899X/147/1/012133
[37] Gashaw A., Teshita A. Production of biodiesel from waste cooking oil and factors affecting its formation: A review. International journal of renewable and sustainable energy 2014:3(5):92–98.
[38] Mohammadshirazi A., Akram A., Rafiee S., Kalhor E. B. Energy and cost analyses of biodiesel production from waste cooking oil. Renewable and Sustainable Energy Reviews 2014:33:44–49. https://doi.org/10.1016/j.rser.2014.01.067
[39] Generator Sizing: A Step by Step Guide. Power Electrics. [Online]. [Accessed: 20 October 2021]. Available: https://www.powerelectrics.com/blog/blog/posts/2015/09/17/generator-sizing
[40] Albatayneh A., Alterman D., Page A., Moghtaderi B. Temperature versus energy based approaches in the thermal assessment of buildings. Energy Procedia 2017:128:46–50. https://doi.org/10.1016/j.egypro.2017.09.013
[41] Albatayneh A. Optimising the parameters of a building envelope in the East Mediterranean Saharan, cool climate zone. Buildings 2021:11(2):43. https://doi.org/10.3390/buildings11020043
[42] Albatayneh A., Alterman D., Page A. Adaptation the use of CFD modelling for building thermal simulation. In Proceedings of the 2018 International Conference on Software Engineering and Information Management 2018.10.1145/3178461.3178466
[43] Albatayneh A., Alterman D., Page A., Moghtaderi B. Renewable energy systems to enhance buildings thermal performance and decrease construction costs. Energy Procedia 2018:152:312–317. https://doi.org/10.1016/j.egypro.2018.09.138
[44] Monna S., Juaidi A., Abdallah R., Albatayneh A., Dutournie P., Jeguirim M. Towards sustainable energy retrofitting, a simulation for potential energy use reduction in residential buildings in Palestine. Energies 2021:14(13):3876. https://doi.org/10.3390/en14133876
[45] Albatayneh A., Alterman D., Page A., Moghtaderi B. The significance of sky temperature in the assessment of the thermal performance of buildings. Applied Sciences 2020:10(22):8057. https://doi.org/10.3390/app10228057
[46] Albatayneh A, Mohaidat S, Alkhazali A, Dalalah Z, Bdour M. The influence of building’s orientation on the overall thermal performance. International Journal of Environmental Science & Sustainable Development. 2018:3(1):63–69. https://doi.org/10.21625/essd.v3iss1.276
[47] Albatayneh A. Optimisation of building envelope parameters in a semi-arid and warm Mediterranean climate zone. Energy Reports 2021:7:2081–2093. https://doi.org/10.1016/j.egyr.2021.04.011
[48] 16.5 kVA Diesel Generator Set DE16SP. 2021. [Online]. [Accessed: 20 October 2021]. Available: https://www.energypower.com.au/product-category/power-generation-ancillaries/