Have a personal or library account? Click to login

Potential of Using WVO for a Restaurant EV Charging Station

Open Access
|Jun 2022

References

  1. [1] Parra C., Kirschke J., Ali S. H. Ensure Access to Affordable, Reliable, Sustainable and Modern Energy for All. Mining, Materials, and the Sustainable Development Goals 2020:14:61–68. CRC Press. https://doi.org/10.1201/9780367814960-7
  2. [2] Bebbington J., Unerman J. Achieving the United Nations sustainable development goals. Accounting, Auditing & Accountability Journal 2018:31(1):2–24. https://doi.org/10.1108/AAAJ-05-2017-2929
  3. [3] Yilmaz N., Morton B. Comparative characteristics of compression ignited engines operating on biodiesel produced from waste vegetable oil. Biomass and Bioenergy 2011:35(5):2194–2199. https://doi.org/10.1016/j.biombioe.2011.02.032
  4. [4] McCarthy P., Rasul M. G., Moazzem S. Comparison of the performance and emissions of different biodiesel blends against petroleum diesel. International Journal of Low-Carbon Technologies 2011:6(4):255–260. https://doi.org/10.1093/ijlct/ctr012
  5. [5] Özener O., Yüksek L., Ergenç A. T., Özkan M. Effects of soybean biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel 2014:115:875–883. https://doi.org/10.1016/j.fuel.2012.10.081
  6. [6] Valente O. S., Da Silva M. J., Pasa V. M., Belchior C. R., Sodre J. R. Fuel consumption and emissions from a diesel power generator fuelled with castor oil and soybean biodiesel. Fuel 2010:89(12):3637–3642. https://doi.org/10.1016/j.fuel.2010.07.041
  7. [7] Lapuerta M., Armas O., Ballesteros R., Fernández J. Diesel emissions from biofuels derived from Spanish potential vegetable oils. Fuel 2005:84(6):773–780. https://doi.org/10.1016/j.fuel.2004.11.010
  8. [8] Altun Ş., Lapuerta M. Properties and emission indicators of biodiesel fuels obtained from waste oils from the Turkish industry. Fuel 2014:128:288–295. https://doi.org/10.1016/j.fuel.2014.03.024
  9. [9] Hoekman S. K., Robbins C. Review of the effects of biodiesel on NOx emissions. Fuel Processing Technology 2012:96:237–249. https://doi.org/10.1016/j.fuproc.2011.12.036
  10. [10] Leevijit T., Prateepchaikul G. Comparative performance and emissions of IDI-turbo automobile diesel engine operated using degummed, deacidified mixed crude palm oil–diesel blends. Fuel 2011:90(4):1487–1491. https://doi.org/10.1016/j.fuel.2010.10.013
  11. [11] Tüccar G., Tosun E., Özgür T., Aydın K. Diesel engine emissions and performance from blends of citrus sinensis biodiesel and diesel fuel. Fuel 2014:132:7–11. https://doi.org/10.1016/j.fuel.2014.04.065
  12. [12] Tashtoush G. M., Al-Widyan M. I., Albatayneh A. M. Factorial analysis of diesel engine performance using different types of biofuels. Journal of environmental management 2007:84(4):401–411. https://doi.org/10.1016/j.jenvman.2006.06.01716934388
  13. [13] Esteban B., Baquero G., Puig R., Riba J. R., Rius A. Is it environmentally advantageous to use vegetable oil directly as biofuel instead of converting it to biodiesel? Biomass and Bioenergy 2011:35(3):1317–1328. https://doi.org/10.1016/j.biombioe.2010.12.025
  14. [14] Albatayneh A., Al-Khasawneh Y., Alawneh F., Alkhazali A., Mohaidat S. Biofuel in Developing Countries – Ethical Concerns. In Advanced Studies in Energy Efficiency and Built Environment for Developing Countries 2019:149–154. Springer, Cham. https://doi.org/10.1007/978-3-030-10856-4_13
  15. [15] Chen W., Wu F., Zhang J. Potential production of non-food biofuels in China. Renewable Energy 2016:85:939–944. https://doi.org/10.1016/j.renene.2015.07.024
  16. [16] Chhetri A. B., Watts K. C., Islam M. R. Waste cooking oil as an alternate feedstock for biodiesel production. Energies 2008:1(1):3–18. https://doi.org/10.3390/en1010003
  17. [17] Knothe G., Krahl J., Van Gerpen J. (Eds.). The biodiesel handbook. Elsevier, 2015.
  18. [18] Pullen J., Saeed K. Factors affecting biodiesel engine performance and exhaust emissions–Part II: Experimental study. Energy 2014:72:17–34. https://doi.org/10.1016/j.energy.2014.02.034
  19. [19] Kalam M. A., Masjuki H. H., Jayed M. H., Liaquat A. M. Emission and performance characteristics of an indirect ignition diesel engine fuelled with waste cooking oil. Energy 2011:36(1):397–402. https://doi.org/10.1016/j.energy.2010.10.026
  20. [20] Abuhabaya A., Fieldhouse J. D., Brown D. R. Evaluation of properties and use of waste vegetable oil (WVO), pure vegetable oils and standard diesel as used in a compression ignition engine. Future Technologies in Computing and Engineering Annual Researchers’ Conference (CEARC’10). The University of Huddersfield. 2010.
  21. [21] Esteban B., Baquero G, Puig R, Riba JR, Rius A. Is it environmentally advantageous to use vegetable oil directly as biofuel instead of converting it to biodiesel? Biomass and Bioenergy 2011:35(3):1317–1328. https://doi.org/10.1016/j.biombioe.2010.12.025
  22. [22] Ortner M. E., Müller W., Schneider I., Bockreis A. Environmental assessment of three different utilisation paths of waste cooking oil from households. Resources, Conservation and Recycling 2016:106:59–67. https://doi.org/10.1016/j.resconrec.2015.11.007
  23. [23] Coriakula J., Moodie M., Waqa G., Latu C., Snowdon W., Bell C. The development and implementation of a new import duty on palm oil to reduce non-communicable disease in Fiji. Globalization and Health 2018:14(1):91. https://doi.org/10.1186/s12992-018-0407-0611637430157872
  24. [24] Home E., Home R., Interface F. C., Biofuels A., Biorefineries I., Consortia B., Basics B., Basics B., Basics B., Basics B., Challenge B. I. 2019 Peer Review Report.
  25. [25] da Silva César A., Werderits D. E., de Oliveira Saraiva G. L., da Silva Guabiroba R. C. The potential of waste cooking oil as supply for the Brazilian biodiesel chain. Renewable and Sustainable Energy Reviews 2017:72:246–253. https://doi.org/10.1016/j.rser.2016.11.240
  26. [26] Cho S., Kim J., Park H. C., Heo E. Incentives for waste cooking oil collection in South Korea: a contingent valuation approach. Resources, Conservation and Recycling 2015:99:63–71. https://doi.org/10.1016/j.resconrec.2015.04.003
  27. [27] Hussain M. N., Al Samad T., Janajreh I. Economic feasibility of biodiesel production from waste cooking oil in the UAE. Sustainable cities and Society 2016:26:217–226. https://doi.org/10.1016/j.scs.2016.06.010
  28. [28] Samad A. T., Perdani M. S., Putri D. N., Hermansyah H. Techno-economic analysis of portable plant from waste cooking oil. Energy Procedia 2018:153:269–273. https://doi.org/10.1016/j.egypro.2018.10.061
  29. [29] Liu T., Liu Y., Wu S., Xue J., Wu Y., Li Y., Kang X. Restaurants’ behaviour, awareness, and willingness to submit waste cooking oil for biofuel production in Beijing. Journal of Cleaner Production 2018:204:636–642. https://doi.org/10.1016/j.jclepro.2018.09.056
  30. [30] Sheinbaum-Pardo C., Calderón-Irazoque A., Ramírez-Suárez M. Potential of biodiesel from waste cooking oil in Mexico. Biomass and Bioenergy 2013:56:230–238. https://doi.org/10.1016/j.biombioe.2013.05.008
  31. [31] Zhang X., Li L., Wu Z., Hu Z., Zhou Y. Material Compatibilities of Biodiesels with Elastomers, Metals and Plastics in a Diesel Engine. SAE International 2009. https://doi.org/10.4271/2009-01-2799
  32. [32] Wang Z., Li L., Wang J., Reitz R. D. Effect of biodiesel saturation on soot formation in diesel engines. Fuel 2016:175:240–248. https://doi.org/10.1016/j.fuel.2016.02.048
  33. [33] The Ministry of Energy & Mineral Resources/Annual Report 2017
  34. [34] Albatayneh A., Assaf M. N., Alterman D., Jaradat M. Comparison of the overall energy efficiency for internal combustion engine vehicles and electric vehicles. Environmental and Climate Technologies 2020:24(1):669–680. https://doi.org/10.2478/rtuect-2020-0041
  35. [35] Jordan Customs. 2022. [Online]. [Accessed: 15 June 2022]. Available: https://www.customs.gov.jo/CustomsLawsEn/Customs_Law.aspx
  36. [36] Allah F. U., Alexandru G. Waste cooking oil as source for renewable fuel in Romania. In IOP Conference Series: Materials Science and Engineering 2016:147(1):012133. https://doi.org/10.1088/1757-899X/147/1/012133
  37. [37] Gashaw A., Teshita A. Production of biodiesel from waste cooking oil and factors affecting its formation: A review. International journal of renewable and sustainable energy 2014:3(5):92–98.
  38. [38] Mohammadshirazi A., Akram A., Rafiee S., Kalhor E. B. Energy and cost analyses of biodiesel production from waste cooking oil. Renewable and Sustainable Energy Reviews 2014:33:44–49. https://doi.org/10.1016/j.rser.2014.01.067
  39. [39] Generator Sizing: A Step by Step Guide. Power Electrics. [Online]. [Accessed: 20 October 2021]. Available: https://www.powerelectrics.com/blog/blog/posts/2015/09/17/generator-sizing
  40. [40] Albatayneh A., Alterman D., Page A., Moghtaderi B. Temperature versus energy based approaches in the thermal assessment of buildings. Energy Procedia 2017:128:46–50. https://doi.org/10.1016/j.egypro.2017.09.013
  41. [41] Albatayneh A. Optimising the parameters of a building envelope in the East Mediterranean Saharan, cool climate zone. Buildings 2021:11(2):43. https://doi.org/10.3390/buildings11020043
  42. [42] Albatayneh A., Alterman D., Page A. Adaptation the use of CFD modelling for building thermal simulation. In Proceedings of the 2018 International Conference on Software Engineering and Information Management 2018.10.1145/3178461.3178466
  43. [43] Albatayneh A., Alterman D., Page A., Moghtaderi B. Renewable energy systems to enhance buildings thermal performance and decrease construction costs. Energy Procedia 2018:152:312–317. https://doi.org/10.1016/j.egypro.2018.09.138
  44. [44] Monna S., Juaidi A., Abdallah R., Albatayneh A., Dutournie P., Jeguirim M. Towards sustainable energy retrofitting, a simulation for potential energy use reduction in residential buildings in Palestine. Energies 2021:14(13):3876. https://doi.org/10.3390/en14133876
  45. [45] Albatayneh A., Alterman D., Page A., Moghtaderi B. The significance of sky temperature in the assessment of the thermal performance of buildings. Applied Sciences 2020:10(22):8057. https://doi.org/10.3390/app10228057
  46. [46] Albatayneh A, Mohaidat S, Alkhazali A, Dalalah Z, Bdour M. The influence of building’s orientation on the overall thermal performance. International Journal of Environmental Science & Sustainable Development. 2018:3(1):63–69. https://doi.org/10.21625/essd.v3iss1.276
  47. [47] Albatayneh A. Optimisation of building envelope parameters in a semi-arid and warm Mediterranean climate zone. Energy Reports 2021:7:2081–2093. https://doi.org/10.1016/j.egyr.2021.04.011
  48. [48] 16.5 kVA Diesel Generator Set DE16SP. 2021. [Online]. [Accessed: 20 October 2021]. Available: https://www.energypower.com.au/product-category/power-generation-ancillaries/
  49. [49] Emissions Calculator – Default. 2021. Biodiesel Fact Sheets. [Online]. [Accessed 20 October 2021]. Available: https://www.biodiesel.org/what-is-biodiesel/biodiesel-fact-sheets
DOI: https://doi.org/10.2478/rtuect-2022-0030 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 392 - 405
Published on: Jun 21, 2022
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2022 Aiman Albatayneh, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.